Skip to main content
Log in

On the role of interfacial elasticity in morphological instability of a heteroepitaxial interface

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, we discuss a theoretical approach to morphological instability analysis of the coherent interphase boundaries in strained heterostructures. Taking into account the fact that, under certain conditions, the atomic arrangement of solid–solid interfaces is thermodynamically unstable, the evolution equation describing the kinetics of the relief formation is obtained. The considered process is controlled by interface diffusion activated by the nonuniform stress field which occurs due to mismatch between materials and the initial interface perturbation. To define the stress distribution along the curved interface, we use constitutive equations of bulk and surface/interface elasticity modeling the interphase domain as a negligibly thin layer adhering to the bulk phases. This allows us to take into account the surface energy variation related to the interface relief evolution and analyze, in addition to other parameters, the effect of elastic constants that characterize the mechanical behavior of the interphase layer. With the use of the first-order approximation of the boundary perturbation method, the solution of the linearized evolution equation leads to an estimation of equilibrium surface shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G., Barthel, E., Doll, G., Murray, C., Stoessel, C., Martinu, L.: Stress in thin films and coatings: current status, challenges, and prospects. J. Vac. Sci. Technol. A 36, 020801 (2018)

    Article  Google Scholar 

  2. Altenbach, H., Eremeyev, V.A., Morozov, N.F.: Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. Int. J. Eng. Sci. 59, 83–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, A.M., Speck, J.S., Romanov, A.E., Bobeth, M., Pompe, W.: Modeling cross-hatch surface morphology in growing mismatched layers. J. Appl. Phys. 91, 1933–1943 (2002)

    Article  ADS  Google Scholar 

  4. Angheluta, L., Mathiesen, J.: Thermodynamics of stressed solids: Slow deformation and roughnening of material interfaces. Eur. Phys. J. Special Topics 178, 123–132 (2009)

    Article  ADS  Google Scholar 

  5. Angheluta, L., Jettestuen, E., Mathiesen, J.: Thermodynamics and roughening of solid-solid interfaces. Phys. Rev. E 79, 031601 (2009)

    Article  ADS  Google Scholar 

  6. Angheluta, L., Jettestuen, E., Mathiesen, J., Renard, F., Jamtveit, B.: Stress-driven phase transformation and the roughnening of solid-solid interfaces. Phys. Rev. Lett. 100, 096105 (2008)

    Article  ADS  Google Scholar 

  7. Aqua, J.-N., Favre, L., Ronda, A., Benkouider, A., Berbezier, I.: Configurable Compliant Substrates for SiGe Nanomembrane Fabrication. Cryst. Growth Des. 15, 3399–3406 (2015)

    Article  Google Scholar 

  8. Avouris, P.: Manipulation of matter at the atomic and molecular levels. Acc. Chem. Res. 28, 95–102 (1995)

    Article  Google Scholar 

  9. Asaro, R.J., Tiller, W.A.: Interface morphology development during stress-corrosion cracking: Part I. Via surface diffusion. Metall. Mater. Trans. 3, 1789–1796 (1972)

    Article  ADS  Google Scholar 

  10. Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33, 309–323 (2001)

    Article  Google Scholar 

  11. Berrehar, J., et al.: Surface patterns on single-crystal films under uniaxial stress: Experimental evidence for the Grinfeld instability. Phys. Rev. B 46, 13487–13495 (1992)

    Article  ADS  Google Scholar 

  12. Bochkarev, A.O., Grekov, M.A.: Influence of surface stresses on the nanoplate stiffness and stability in the Kirsch problem. Phys. Mesomech. 22, 209–223 (2019)

    Article  Google Scholar 

  13. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961)

    Article  Google Scholar 

  14. Cahn, J.W., Larche, F.: Surface stress and the chemical-equilibrium of small crystals. II. Solid particles embedded in a solid matrix. Acta Metall. 30, 51–56 (1982)

    Article  Google Scholar 

  15. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  ADS  Google Scholar 

  16. Chiu, C.-H., Poh, C.T., Huang, Z.: Morphological stability of the Stranski-Krastanow systems under an electric field. Applied Physics Letters 88, 241906 (2006)

    Article  ADS  Google Scholar 

  17. Chen, L.-Q., Wang, Y.: The continuum field approach to modeling microstructural evolution. JOM 48, 13–18 (1996)

    Article  Google Scholar 

  18. Chen, T., Chiu, M.-S., Weng, M.-S.: Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100, 074308 (2006)

    Article  ADS  Google Scholar 

  19. Colin, J., Grilhe, J., Junqua, N.: Morphological instabilities of a stressed pore channel. Acta Mater. 45, 3835–3841 (1997)

    Article  ADS  Google Scholar 

  20. Colin, J., Thilly, L., Lecounturier, F., Peyrade, J.P., Grilhé, J., Askenazy, S.: Axial and radial interface instabilities of copper/tantalum cylindrical conductors. Acta metall. 47, 2761–2768 (1999)

    Google Scholar 

  21. Collins, J.B., Levine, H.: Diffuse interface model of diffusion-limited crystal growth. Phys. Rev. B 31, 6119 (1985)

    Article  ADS  Google Scholar 

  22. Dai, M., Li, M., Schiavone, P.: Plane deformations of an inhomogeneity-matrix system incorporating a compressible liquid inhomogeneity and complete Gurtin-Murdoch interface model. Journal of Applied Mechanics 85, 121010 (2018)

    Article  ADS  Google Scholar 

  23. Dai, M., Gharahi, A., Schiavone, P.: Analytic solution for a circular nano-inhomogeneity with interface stretching and bending resistance in plane strain deformations. Appl. Math. Model. 55, 160–170 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dai, M., Schiavone, P.: Edge dislocation interacting with a Steigmann-Ogden interface incorporating residual tension. Int. J. Eng. Sci. 139, 62–69 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dhankhar, M., Ranganathan, M.: Quantum dot molecule formation in Si-Ge heteroepitaxy on pit-patterned Si(001) substrate: A theoretical study. J. Cryst. Growth 535, 125508 (2020)

    Article  Google Scholar 

  26. Du, D., Srolovitz, D.: Electrostatic field-induced surface instability. Applied Physics Letters 85, 4917 (2004)

    Article  ADS  Google Scholar 

  27. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. Advances in Applied Mechanics 42, 1–68 (2008)

    Google Scholar 

  28. Duan, H.L., Weissmüller, J., Wang, Y.: Instabilities of core-shell heterostructured cylinders due to diffusions and epitaxy: spheroidization and blossom of nanowires. J. Mech. Phys. Solids 56, 1831–1851 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fischer, F.D., Waitz, T., Vollath, D., Simha, N.K.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 53, 481–527 (2008)

    Article  Google Scholar 

  31. Fitzgerald, E.A., Ast, D.G.: Structure and recombination in InGaAs/GaAs heterostructures. J. Appl. Phys. 28, 693–703 (1988)

    Article  ADS  Google Scholar 

  32. Fleury, V.: Un possible lien entre la croissance dendritique en physique et la morphogenese des plantes. Compt. Rendus. Acad. Sci. III Sci. Vie. 322, 725–734 (1999)

    Google Scholar 

  33. Freund, L.B.: Evolution of waviness on the surface of a strained elastic solid due to stress-driven diffusion. Int. J. Solids Struct. 28, 911–923 (1995)

    Article  MATH  Google Scholar 

  34. Freund, L.B., Suresh, S.: Thin film materials: stress, defect formation and surface evolution. University Press, Cambridge (2003)

    MATH  Google Scholar 

  35. Gao, H.: Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure. J. Mech. Phys. Solids 42, 741–772 (1994)

    Article  ADS  MATH  Google Scholar 

  36. Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs. Longmans-Green, London (1906)

    MATH  Google Scholar 

  37. Goldstein, R.V., Makhviladze, T.M., Sarychev, M.E.: Instability of the interface between joint conducting materials under electrical current. Mater. Lett. 6, 98–101 (2016)

    Article  Google Scholar 

  38. Goldstein, R.V., Makhviladze, T.M., Sarychev, M.E.: Electromigration-induced instability of the interface between solid conductors. Phys. Mesomech. 21, 275–282 (2018)

    Article  Google Scholar 

  39. Gorbushin, N., Eremeyev, V.A., Mishuris, G.: On the stress singularity near the tip of a crack with surface stresses. Int. J. Eng. Sci. 146, 103183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. Grekov, M.A., Kostyrko, S.A.: Surface effects in an elastic solid with nanosized surface asperities. Int. J. Solids and Struct. 96, 153–161 (2016)

    Article  Google Scholar 

  41. Grekov, M.A., Sergeeva, T.S.: Interaction of edge dislocation array with bimaterial interface incorporating interface elasticity. Int. J. Eng. Sci. 149, 103233 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Grekov, M.A., Sergeeva, T.S., Pronina, Y.G., Sedova, O.S.: A periodic set of edge dislocations in an elastic solid with a planar boundary incorporating surface effects. Eng. Fract. Mech. 186, 423–435 (2017)

    Article  Google Scholar 

  43. Grinfeld, M.: Instability of the equilibrium of a nonhydrostatically stressed body and a melt. Fluid Dyn. 22, 169–173 (1987)

    Article  ADS  Google Scholar 

  44. Grinfeld, M.A.: Thermodynamic methods in the theory of heterogeneous systems. Longman, Sussex, UK (1991)

    Google Scholar 

  45. Grinfeld, M., Grinfeld, P.: Towards thermodynamics of elastic electric conductors. Philos. Mag. A 81, 1341–1354 (2001)

    Article  ADS  Google Scholar 

  46. Grinfeld, M.A., Hazzledine, P.M.: Rearrangement at coherent interfaces in heterogeneous solids. Philos. Mag. Lett. 74, 17–23 (1996)

    Article  ADS  Google Scholar 

  47. Gurtin, M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Gurtin, M.E., Jabbour, M.E.: Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: Interface-controlled evolution, phase transitions, epitaxial growth of elastic films. Arch. Ration. Mech. Anal. 163, 171–208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  50. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  51. Gurtin, M.E., Voorhees, P.W.: The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc. R. Soc. A 440, 323–343 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Gurtin, M.E., Voorhees, P.W.: The thermodynamics of evolving interfaces far from equilibrium. Acta Mater. 44, 235–247 (1996)

    Article  ADS  Google Scholar 

  53. Gurtin, M.E., Weissmüller, J., Larché, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  ADS  Google Scholar 

  54. Ishiguro, H., Rubinsky, B.: Mechanical Interactions between ice crystals and red blood cells during directional solidification. Cryobiology 31, 483–500 (1994)

    Article  Google Scholar 

  55. Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lowerdimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale. A Unifying Review. Appl. Mech. Rev. 65, 010802 (2013)

    Article  ADS  Google Scholar 

  56. Javili, A., Ottosen, N.S., Ristinmaa, M., Mosler, J.: Aspects of interface elasticity theory. Math. Mech. Solids 23, 1004–1024 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  57. Jonsdottir, F.: Computation of equilibrium surface fluctuations in strained epitaxial-films due to interface misfit dislocation. Modelling Simul. Mater. Sci. Eng. 3, 503–520 (1995)

    Article  ADS  Google Scholar 

  58. Junqua, N., Grilhé, J.: Instabilities of planar interfaces between two stressed materials. Philos. Mag. Lett. 69, 61–70 (1994)

    Article  ADS  Google Scholar 

  59. Kim, J.-H., Vlassak, J.J.: Perturbation analysis of an undulating free surface in a multi-layered structure. Int. J. Solids Struct. 44, 7924–7937 (2007)

    Article  MATH  Google Scholar 

  60. Kitamura, T., Hirakata, H., Sumigawa, T., Shimada, T.: Fracture Nanomachanics. Pan Stanford, New York (2011)

    Book  Google Scholar 

  61. Klinger, L., Levin, L., Srolovitz, D.: Morphological stability of a heterophase interface under electromigration conditions. J. Appl. Phys. 79, 6834–6839 (1996)

    Article  ADS  Google Scholar 

  62. Komarov, I.A., Antipova, O.M., Kalinnikov, A.N., Orlov, M.A., Bogachev, V.V., Buyanov, A.D., Onoprienko, E.A.: Coupling of short DNAs with reduced graphene oxide for electronic and sensing applications. Fuller. Nanotub. Car. N. 28(7), 526–532 (2020)

    Article  Google Scholar 

  63. Kostyrko, S.A., Grekov, M.A.: Elastic field at a rugous interface of a bimaterial with surface effects. Eng. Fract. Mech. 216, 106507 (2019)

    Article  Google Scholar 

  64. Kostyrko, S., Grekov, M., Altenbach, H.: Stress concentration analysis of nanosized thin-film coating with rough interface. Continuum Mech. Thermodyn. 31, 1863–1871 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  65. Kostyrko, S., Shuvalov, G.: Surface elasticity effect on diffusional growth of surface defects in strained solids. Continuum Mech. Thermodyn. 31, 1795–1803 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  66. Larché, F.C., Cahn, J.C.: The interaction of composition and stress in crystalline solids. Acta Metall. 33, 331–357 (1985)

    Article  Google Scholar 

  67. Leo, P.H., Lowengrub, J.S., Jou, H.J.: A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater. 46, 2113–2130 (1998)

    Article  ADS  Google Scholar 

  68. Lu, W., Suo, Z.: Dynamics of nanoscale pattern formation of an epitaxial monolayer. J. Mech. Phys. Solids 49, 1937–1950 (2001)

    Article  ADS  MATH  Google Scholar 

  69. Lurie, S., Belov, P.: Gradient effects in fracture mechanics for nano-structured materials. Eng. Fract. Mech. 130, 3–11 (2014)

    Article  Google Scholar 

  70. McBride, A.T., Javili, A., Steinmann, P., Bargmann, S.: Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion. J. Mech. Phys. Solids 59, 2116–2133 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  ADS  Google Scholar 

  72. Mogilevskaya, S.G., Crouch, S.I., Stolarski, H.K.: Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids 56, 2298–2327 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)

    Article  ADS  Google Scholar 

  74. Mullins, W.W., Sekerka, R.F.: Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323–329 (1963)

    Article  ADS  Google Scholar 

  75. Murphy, S., Osing, J., Shvets, I.V.: Irreversible nanoscale morphology transformation of an Fe film on Mo(110) induced by a magnetic STM tip. Surf. Sci. 547, 139–148 (2003)

    Article  ADS  Google Scholar 

  76. Nazarenko, L., Bargmann, S., Stolarski, H.: Closed-form formulas for the effective properties of random particulate nanocomposites with complete Gurtin-Murdoch model of material surfaces. Continuum Mech. Thermodyn. 29(1), 77–96 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Nazarenko, L., Chirkov, A.Y., Stolarski, H., Altenbach, H.: On the modeling of carbon nanotubes reinforced materials and on influence of carbon nanotubes spatial distribution on mechanical behavior of structural elements. Int. J. Eng. Sci. 143, 1–13 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  78. Nazarenko, L., Stolarski, H., Altenbach, H.: Effective properties of short-fiber composites with Gurtin-Murdoch model of interphase. Int. J. Solids Struct. 97–98, 75–88 (2016)

    Article  Google Scholar 

  79. Nazarenko, L., Stolarski, H., Altenbach, H.: Effective properties of short-fiber composites with Gurtin-Murdoch model of interphase. Int. J. Eng. Sci. 126, 130–141 (2017)

    Google Scholar 

  80. Otsuka, K., Karato, S.: Deep penetration of molten iron into the mantle caused by a morphological instability. Nature 492, 243–246 (2012)

    Article  ADS  Google Scholar 

  81. Povstenko, Yu.Z.: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Solids 41, 1499–1514 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Risler, T., Basan, M.: Morphological instabilities of stratified epithelia: a mechanical instability in tumour formation. New J. Phys. 15, 065011 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  83. Ru, C.Q.: Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci. China Phys. Mech. 53, 536–544 (2010)

    Article  Google Scholar 

  84. Sekerka, R.F.: Morphological stability. J. Cryst. Growth 3, 71–81 (1968)

    Article  ADS  Google Scholar 

  85. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  ADS  Google Scholar 

  86. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Article  ADS  Google Scholar 

  87. Shodja, H.M., Ahmadzadeh-Bakhshayesh, H., Gutkin, MYu.: Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects. Int. J. Solids Struct. 49, 759–770 (2012)

    Article  Google Scholar 

  88. Shuttleworth, R.: The surface tension of solids. Proceedings of the Physical Society Series A 63, 444–457 (1950)

    Article  ADS  Google Scholar 

  89. Shuvalov, G.M., Vakaeva, A.B., Shamsutdinov, D.A., Kostyrko, S.A.: The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 16(2), 165–176 (2020)

  90. Shuvalov, G.M., Kostyrko, S.A.: Surface self-organization in multilayer film coatings. AIP Conf. Proc. 1909, 020196 (2017)

    Article  Google Scholar 

  91. Srolovitz, D.J.: On the stability of surfaces of stressed solids. Acta Metall. 37, 621–625 (1989)

    Article  Google Scholar 

  92. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A 455, 437–474 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453, 853–877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  94. Thornton, K., Ågren, J., Voorhees, P.W.: Modeling the evolution of phase boundaries in solids at the meso- and nano-scales. Acta Mater. 51, 5675–5710 (2003)

    Article  ADS  Google Scholar 

  95. Tian, L., Rajapakse, R.K.N.D.: Elastic field of an isotropic matrix with nanoscale elliptical inhomogeneity. Int. J. Solids Struct. 44, 7988–8005 (2007)

    Article  MATH  Google Scholar 

  96. Torii, R.H., Balibar, S.: Helium crystals under stress: the Grinfeld instability. J. Low Temp. Phys. 89, 391–400 (1992)

    Article  ADS  Google Scholar 

  97. Umeno, Y., Shimada, T., Kinoshita, Y., Kitamura, T.: Multiphysics in nanostructures. Springer, Japan (2017)

    Book  Google Scholar 

  98. Vakaeva, A.B., Krasnitckii, S.A., Grekov, M.A., Gutkin, M.Y.: Stress field in ceramic material containing threefold symmetry inhomogeneity. J. Mater. Sci. 55, 9311–9321 (2020)

    Article  ADS  Google Scholar 

  99. Wang, J., Huang, Z., Duan, H., Yu, S.W., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)

    Article  Google Scholar 

  100. Xie, Z., Avila, R., Huang, Y., Rogers, J.A.: Flexible and Stretchable Antennas for Biointegrated Electronics. Adv. Mater. 32, 1902767 (2020)

    Article  Google Scholar 

  101. Xu, X., Aqua, J.-N.: Quantum dot growth on a stripe-pattern. Thin Solid Films 543, 7–10 (2013)

    Article  ADS  Google Scholar 

  102. Yoshino, T.: Penetration of molten iron alloy into the lower mantle phase. C. R. Geosci 351, 171–181 (2019)

    Article  Google Scholar 

  103. Zhang, J., Zhang, K., Yong, J., Yang, Q., He, Y., Zhang, C., Hou, X., Chen, F.: Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics. Colloid Interface Sci. 578, 146–154 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is supported by the Russian Foundation for Basic Research under grant 19-31-90024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Shuvalov.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The reported study was funded by RFBR, Project No. 19-31-90024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuvalov, G., Kostyrko, S. On the role of interfacial elasticity in morphological instability of a heteroepitaxial interface. Continuum Mech. Thermodyn. 33, 2095–2107 (2021). https://doi.org/10.1007/s00161-021-01010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01010-6

Keywords

Navigation