Skip to main content

Plant-Based Metabolites and Their Uses in Nanomaterials Synthesis: An Overview

  • Chapter
  • First Online:
Secondary Metabolites Based Green Synthesis of Nanomaterials and Their Applications

Abstract

The primary disciplines in the field of nanotechnology are biology, physics, chemistry, and material sciences. It also involves the creation of novel therapeutic nanomaterials for biomedical and pharmaceutical uses. Various macro-microscopic organisms, including plants, bacteria, fungi, seaweeds, and microalgae, are responsible for the biological synthesis of nanoparticles. The various endemic pathogens were effectively controlled by biosynthesized nanomaterials while causing fewer harmful side effects. In addition to alkaloids, flavonoids, saponins, steroids, and tannins, the plant also contains a variety of additional nutritional components. These natural substances can be found in plants. These organic ingredients come from a wide range of plant components, such as leaves, stems, roots, shoots, flowers, bark, and seeds. Recent research has demonstrated the potential of plant extracts as a non-hazardous precursor for the synthesis of nanomaterials. The plant extract serves as a reducing and stabilizing agent for the bio-reduction reaction to synthesize novel metallic nanoparticles because it contains a variety of secondary metabolites. A complex mixture of various phytochemicals, including phenolics, sugars, flavonoids, xanthones, and others, makes up plant extract. Nanoparticles are synthesized using non-biological techniques (chemical and physical), which are extremely dangerous and harmful to living organisms. In addition, the environmentally friendly, low-cost, one-step biological synthesis of metallic nanoparticles. Several nanomaterials that are better for the environment can be effectively manufactured using plants. These nanoparticles include such as cobalt, copper, silver, gold, palladium, platinum, zinc oxide, and magnetite. Furthermore, the plant-mediated nanoparticles show promise as a potential treatment for a variety of diseases, which includes cancer, HIV, hepatitis, malaria, and other acute infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Softcover Book
USD 199.99
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acay H, Baran MF (2019) Biosynthesis and characterization of silver nanoparticles using king oyster (Pleurotus eryngii) extract: effect on some microorganisms. Appl Ecol Environ Res 17:9205–9214

    Article  Google Scholar 

  2. Ahmad T, Iqbal J, Bustam MA, Irfan M, Asghar HMA (2021) A critical review on phytosynthesis of gold nanoparticles: issues, challenges and future perspectives. J Clean Prod 309:127460

    Article  CAS  Google Scholar 

  3. Alkhalaf MI, Hussein RH, Hamza A (2020) Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci 27(9):2410–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Al-Nuairi AG, Mosa KA, Mohammad MG, El-Keblawy A, Soliman S, Alawadhi H (2020) Biosynthesis, characterization, and evaluation of the cytotoxic effects of biologically synthesized silver nanoparticles from cyperus conglomeratus root extracts on breast cancer cell line MCF-7. Biol Trace Elem Res 194(2):560–569

    Article  CAS  PubMed  Google Scholar 

  5. Alshameri AW, Owais M (2022) Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: a review. OpenNano, 100077

    Google Scholar 

  6. Antony D, Yadav R, Kalimuthu R (2021) Accumulation of Phyto-mediated nano-CeO2 and selenium doped CeO2 on Macrotyloma uniflorum (horse gram) seed by nano-priming to enhance seedling vigor. Biocatal Agric Biotechnol 31:101923

    Article  CAS  Google Scholar 

  7. Aromal SA, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta Part A Mol Biomol Spectrosc 97:1–5

    Article  Google Scholar 

  8. Aromal SA, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta A Mol Biomol Spectrosc 97:1–5

    Article  Google Scholar 

  9. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 7:6003

    Article  CAS  Google Scholar 

  10. Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ., Masjedi A, Shahrivar, Ahmadpour E F (2019) Nanobiotechnology as an emerging approach to combat malaria: a systematic review. Nanomed Nanotechnol Biol Med 18:221–233

    Google Scholar 

  11. Bello BA, Khan SA, Khan JA, Syed FQ, Anwar Y, Khan SB (2017) Antiproliferation and antibacterial effect of biosynthesized AgNps from leaves extract of Guiera senegalensis and its catalytic reduction on some persistent organic pollutants. J Photochem Photobiol B: Biol 175:99–108

    Article  CAS  Google Scholar 

  12. Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4(5):345–357

    CAS  Google Scholar 

  13. Chelliah R, lHasan Madar I, Sultan G, Begum M, Pahi B, Tayubi IA, Selvakumar V, Oh DH (2023) Risk assessment and regulatory decision-making for nanomaterial use in agriculture. In: Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management, pp 413–430

    Google Scholar 

  14. Chelliah R, Wei S, Daliri EBM, Rubab M, Elahi F, Yeon SJ, Yan P, Liu S, Oh DH (2021) Development of Nanosensors based intelligent packaging systems: food quality and medicine. Nanomaterials 11(6):1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24(10):5233–5237

    Article  CAS  PubMed  Google Scholar 

  16. Cruz D, Falé PL, Mourato A, Vaz PD, Serralheiro ML, Lino ARL (2010) Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf B 81(1):67–73

    Article  CAS  Google Scholar 

  17. Daisy P, Saipriya K (2012) Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomed 7:1189

    Article  CAS  Google Scholar 

  18. Das S, Das J, Samadder A, Bhattacharyya SS, Das D, Khuda-Bukhsh AR (2013) Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids Surf B 101:325–336

    Article  CAS  Google Scholar 

  19. Deshmukh SP, Patil SM, Mullani SB, Delekar SD (2019) Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C 97:954–965

    Article  CAS  Google Scholar 

  20. Dipankar C, Murugan S (2012) The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf, B 98:112–119

    Article  CAS  Google Scholar 

  21. El Shafey AM (2020) Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. Green Process Synth 9(1):304–339

    Article  Google Scholar 

  22. Fayaz AM, Ao Z, Girilal M, Chen L, Xiao X, Kalaichelvan PT, Yao X (2012) Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV-and HSV-transmitted infection. Int J Nanomedicine 7:5007

    CAS  Google Scholar 

  23. Fytianos G, Rahdar A, Kyzas GZ (2020) Nanomaterials in cosmetics: recent updates. Nanomaterials 10(5):979

    Article  CAS  PubMed  Google Scholar 

  24. Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16(10):8894–8918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomed 7:483

    CAS  Google Scholar 

  26. Go MR, Bae SH, Kim HJ, Yu J, Choi SJ (2017) Interactions between food additive silica nanoparticles and food matrices. Front Microbiol 8:1013

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gurunathan S, Jeyaraj M, Kang MH, Kim JH (2019) The effects of apigenin-biosynthesized ultra-small platinum nanoparticles on the human monocytic THP-1 cell line. Cells 8(5):444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang F, Long Y, Liang Q, Purushotham B, Swamy MK, Duan Y (2019) Safed Musli (Chlorophytum borivilianum L.) callus-mediated biosynthesis of silver nanoparticles and evaluation of their antimicrobial activity and cytotoxicity against human colon cancer cells. J Nanomater

    Google Scholar 

  29. Husen A (2019) Natural product-based fabrication of zinc oxide nanoparticles and their application. In: Husen A, Iqbal M (eds) Nanomaterials and plant potential. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham pp. 193–291. https://doi.org/10.1007/978-3-030-05569-1_7

  30. Husen A (2020c) Introduction and techniques in nanomaterials formulation. In: Husen, A, Jawaid M (eds) Nanomaterials for agriculture and forestry applications. Elsevier Inc. 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA, pp 1–14

    Google Scholar 

  31. Husen A, Iqbal M (2019a) Nanomaterials and plant potential: an overview. In: Husen A, Iqbal M (eds) Nanomaterials and plant potential. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, pp 3–29. https://doi.org/10.1007/978-3-030-05569-1_1

  32. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(229):1–24

    CAS  Google Scholar 

  33. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12(1):1–16

    Article  Google Scholar 

  34. Husen A (2020a) Interactions of metal and metal-oxide nanomaterials with agricultural crops: an overview. In: Husen, A, Jawaid M (eds) Nanomaterials for agriculture and forestry applications. Elsevier Inc. 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA, pp 167–197. https://doi.org/10.1016/B978-0-12-817852-2.00007-X

  35. Husen A (2020b) Carbon-based nanomaterials and their interactions with agricultural crops (Eds. Husen A, Jawaid M) Elsevier Inc. 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA, pp 199–218. https://doi.org/10.1016/B978-0-12-817852-2.00008-1

  36. Husen A (2021) Harsh environment and plant resilience (Molecular and Functional Aspects). Springer Nature Switzerland AG, Gewerbestrasse 11, 6330 Cham, Switzerland. https://doi.org/10.1007/978-3-030-65912-7

  37. Husen A (2022) Engineered nanomaterials for sustainable agricultural production, soil improvement and stress management. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA

    Google Scholar 

  38. Husen A, Iqbal M (2019b) Nanomaterials and plant potential. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, Switzerland. https://doi.org/10.1007/978-3-030-05569-1

  39. Husen A, Jawaid M (2020) Nanomaterials for agriculture and forestry applications. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA. https://doi.org/10.1016/C2018-0-02349-X

  40. Jahan I, Erci F, Isildak I (2019) Microwave-assisted green synthesis of non-cytotoxic silver nanoparticles using the aqueous extract of Rosa santana (rose) petals and their antimicrobial activity. Anal Lett 52(12):1860–1873

    Article  CAS  Google Scholar 

  41. Jain D, Daima HK, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig J Nanomater Biostructures 4(3):557–563

    Google Scholar 

  42. Jamdagni P, Khatri P, Rana JS (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ. Sci 30(2):168–175

    Article  Google Scholar 

  43. Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194

    Google Scholar 

  44. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim. Acta A Mol Biomol Spectrosc 79(3):594–598

    Article  CAS  PubMed  Google Scholar 

  45. Ke Y, Al Aboody MS, Alturaiki W, Alsagaby SA, Alfaiz FA, Veeraraghavan VP, Mickymaray S (2019) Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol 47(1):1938–1946

    Article  CAS  PubMed  Google Scholar 

  46. Kora AJ, Sashidhar RB, Arunachalam J (2012) Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47(10):1516–1520

    Article  CAS  Google Scholar 

  47. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan NJ (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B 76(1):50–56

    Article  CAS  Google Scholar 

  48. Kumar A, Choudhary A, Kaur H, Guha S, Mehta S, Husen A (2022) Potential applications of engineered nanoparticles in plant disease management: a critical update. Chemosphere 295:133798

    Article  CAS  PubMed  Google Scholar 

  49. Kumar A, Choudhary A, Kaur H, Mehta S, Husen A (2021) Metal-based nanoparticles, sensors and their multifaceted application in food packaging. J Nanobiotechnol 19(256):1–25. https://doi.org/10.1186/s12951-021-00996-0

    Article  Google Scholar 

  50. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 84(2):151���157

    CAS  Google Scholar 

  51. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–an updated report. Saudi Pharm J 24(4):473–484

    Article  PubMed  Google Scholar 

  52. Machado S, Pinto SL, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C (2013) Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci Total Environ 445:1–8

    Article  PubMed  Google Scholar 

  53. Maensiri S, Laokul P, Klinkaewnarong J, Phokha S, Promarak V, Seraphin S (2008) Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: synthesis and optical properties. J Optoelectron Adv Mater 10(3):161–165

    Google Scholar 

  54. Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, Venkatachalam K, Wang MH (2020) Folic acid functionalized starch encapsulated green synthesized copper oxide nanoparticles for targeted drug delivery in breast cancer therapy. Int J Biol Macromol 164:2073–2084

    Article  CAS  PubMed  Google Scholar 

  55. Matle KR, Mbatha E, Madoroba E (2020) A review of listeria monocytogenes from meat and meat products: epidemiology, virulence factors, antimicrobial resistance and diagnosis, Onderstepoort. J Vet Res 87:1–20

    Google Scholar 

  56. Mubeen B, Ansar AN, Rasool R, Ullah I, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Nadeem MS, Kazmi I (2021) Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics. Antibiotics 10(12):1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mujtaba M, Wang D, Carvalho LB, Oliveira JL, Espirito Santo Pereira AD, Sharif R, Jogaiah S, Paidi MK, Wang L, Ali Q, Fraceto LF (2021) Nanocarrier-mediated delivery of miRNA, RNAi, and CRISPR-Cas for plant protection: current trends and future directions. ACS Agricultural Science & Technology 1(5):417–435

    Article  CAS  Google Scholar 

  58. Munir H, Bilal M, Mulla SI, Abbas Khan H, Iqbal H (2021) Plant-mediated green synthesis of nanoparticles. Advances in Green Synthesis. Springer, Cham, pp 75–89

    Chapter  Google Scholar 

  59. Nagati VB, Alwala J, Koyyati R, Donda MR, Banala R, Padigya PRM (2012) Green synthesis of plant-mediated silver nanoparticles using Withania somnifera leaf extract and evaluation of their antimicrobial activity. Asian Pac J Trop Biomed 2:1–5

    Google Scholar 

  60. Ng HS, Kee PE, Yim HS, Chen PT, Wei YH, Lan JCW (2020) Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts. Bioresour Technol 302:122889

    Article  CAS  PubMed  Google Scholar 

  61. Niraimathi KL, Sudha V, Lavanya R, Brindha P (2013) Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf B 102:288–291

    Article  CAS  Google Scholar 

  62. Oladipo IC, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Ogunsona SB, Irshad HM, Abbas SH (2020) Antidiabetic properties of phytosynthesized gold nanoparticles (AuNPs) from Datura stramonium seed. In: IOP conference series: materials science and engineering 805, No 1, p 012035). IOP Publishing

    Google Scholar 

  63. Ovais M, Khalil AT, Islam NU, Ahmad I, Ayaz M, Saravanan M, Shinwari ZK, Mukherjee S (2018) Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 102(16):6799–6814

    Article  CAS  PubMed  Google Scholar 

  64. Padalia H, Moteriya P, Chanda S (2015) Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab J Chem 8(5):732–741

    Article  CAS  Google Scholar 

  65. Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJ, Mech A, Moniz FB, Pesudo LQ, Rauscher H (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54:155–164

    Article  CAS  Google Scholar 

  66. Prema D, Prakash J, Vignesh S, Veluchamy P, Ramachandran C, Samal DB, Oh DH, Sahabudeen S, Devanand Venkatasubbu G (2020) Mechanism of inhibition of graphene oxide/zinc oxide nanocomposite against wound infection causing pathogens. Appl Nanosci 10(3):827–849

    Article  CAS  Google Scholar 

  67. Qiu R, Xiong W, Hua W, He Y, Sun X, Xing M, Wang L (2021) A biosynthesized gold nanoparticle from Staphylococcus aureus–as a functional factor in muscle tissue engineering. Appl Mater Today 22:100905

    Article  Google Scholar 

  68. Rahman K, Khan SU, Fahad S, Chang MX, Abbas A, Khan WU, Rahman L, Haq ZU, Nabi G, Khan D (2019) Nano-biotechnology: a new approach to treat and prevent malaria. Int J Nanomedicine 14:1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ranjani S, Shariq Ahmed M, MubarakAli D, Ramachandran C, Senthil Kumar N, Hemalatha S (2020) Toxicity assessment of silver nanoparticles synthesized using endophytic fungi against nosacomial infection. Inorg. Nano-Met Chem 51(8):1080–1085

    Google Scholar 

  70. Rasaee I, Ghannadnia M, Baghshahi S (2018) Biosynthesis of silver nanoparticles using leaf extract of Satureja hortensis treated with NaCl and its antibacterial properties. Microporous Mesoporous Mater 264:240–247

    Article  CAS  Google Scholar 

  71. Razavi M, Salahinejad E, Fahmy M, Yazdimamaghani M, Vashaee D, Tayebi L (2015) Green chemical and biological synthesis of nanoparticles and their biomedical applications. Green Nanotechnol, 207–235

    Google Scholar 

  72. Rodríguez-León E, Iñiguez-Palomares R, Navarro RE, Herrera-Urbina R, Tánori J, Iñiguez-Palomares C, Maldonado A (2013) Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett 8(1):1–9

    Article  Google Scholar 

  73. Roy S, Das TK (2015) Plant mediated green synthesis of silver nanoparticles-A. Int J Plant Biol Res 3:1044–1055

    Google Scholar 

  74. Saim AK, Kumah FN, Oppong MN (2021) Extracellular and intracellular synthesis of gold and silver nanoparticles by living plants: a review. Nanotechnol Environ Eng 6(1):1–11

    Article  CAS  Google Scholar 

  75. Sana SS, Li H, Zhang Z, Sharma M, Usmani Z, Hou T, Netala VR, Wang X, Gupta VK (2021) Recent advances in essential oils-based metal nanoparticles: A review on recent developments and biopharmaceutical applications. J Mol Liq 333:115951

    Article  CAS  Google Scholar 

  76. Saravanakumar K, Mariadoss AVA, Sathiyaseelan A, Wang MH (2020) Synthesis and characterization of nano-chitosan capped gold nanoparticles with multifunctional bioactive properties. Int J Biol Macromol 165:747–757

    Article  CAS  PubMed  Google Scholar 

  77. Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B 73(2):332–338

    Article  CAS  Google Scholar 

  78. Sathiyaseelan A, Saravanakumar K, Mariadoss AVA, Wang MH (2020) Biocompatible fungal chitosan encapsulated phytogenic silver nanoparticles enhanced antidiabetic, antioxidant and antibacterial activity. Int J Biol Macromol 153:63–71

    Article  CAS  PubMed  Google Scholar 

  79. Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T (2011) Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J Nanobiotechnol 9:43

    Google Scholar 

  80. Selvakumar V, Muthusamy K, Mukherjee A, Chelliah R, Barathikannan K, Oh DH, Ayyamperumal R, Karuppannan S (2022) Antibacterial efficacy of Phytosynthesized multi-metal oxide nanoparticles against drug-resistant foodborne pathogens. J Nanomater

    Google Scholar 

  81. Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, Abdollahi Y, Bagheri S, Abdolmohammadi S, Usman MS, Zidan M (2012) Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules 17(7):8506–8517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sharma G, Nim S, Alle M, Husen A, Kim JC (2022) Nanoparticle-mediated delivery of flavonoids for cancer therapy: prevention and treatment. In: Kim JC, Alle M, Husen A (eds) Smart nanomaterials in biomedical applications. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-84262-8_3

  83. Sharma P, Pandey V, Sharma MMM, Patra A, Singh B, Mehta S, Husen A (2021) A review on biosensors and Nanosensors application in agroecosystems. Nano Res Lett 16:136. https://doi.org/10.1186/s11671-021-03593-0

    Article  Google Scholar 

  84. Siddiqi KS, Husen A (2020) Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review. Biomater Res 24(11):1–15

    Google Scholar 

  85. Siddiqi KS, Husen A (2021) Plant response to silver nanoparticles: a critical review. Crit Rev Biotechnol 42(7):773–990. https://doi.org/10.1080/07388551.2021.1975091

    Article  CAS  Google Scholar 

  86. Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D, Dounousi E, Peschos D (2021) Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci 16(1):62–76

    Article  PubMed  Google Scholar 

  87. Singh C, Sharma V, Naik PK, Khandelwal V, Singh H (2011) A green biogenic approach for synthesis of gold and silver nanoparticles using Zingiber officinale. Dig J Nanomater Biostructures 6(2):535–542

    Google Scholar 

  88. Singh S, Saikia JP, Buragohain AK (2013) A novel green synthesis of colloidal silver nanoparticles (SNP) using Dillenia indica fruit extract. Colloids Surf B 102:83–85

    Article  CAS  Google Scholar 

  89. Song JY, Kim BS (2008) Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng 25(4):808–811

    Article  CAS  Google Scholar 

  90. Sufyani A, Moslah N, Hussien NA, Hawsawi YM (2019) Characterization and anticancer potential of silver nanoparticles biosynthesized from Olea chrysophylla and Lavandula dentata leaf extracts on HCT116 colon cancer cells. J Nanomater

    Google Scholar 

  91. Suman TY, Rajasree SR, Kanchana A, Elizabeth SB (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B 106:74–78

    Article  CAS  Google Scholar 

  92. Suriyakalaa U, Antony JJ, Suganya S, Siva D, Sukirtha R, Kamalakkannan S, Pichiah PT, Achiraman S (2013) Hepatocurative activity of biosynthesized silver nanoparticles fabricated using Andrographis paniculata. Colloids Surf B 102:189–194

    Article  CAS  Google Scholar 

  93. Tabande L, Sepehri M, Yasrebi J, Zarei M, Ghasemi-Fasaei R, Khatabi B (2022) A comparison between the function of Serendipita indica and Sinorhizobium meliloti in modulating the toxicity of zinc oxide nanoparticles in alfalfa (Medicago sativa L.). Environ Sci Pollut Res 29(6):8790–8803

    Google Scholar 

  94. Takooree H, Aumeeruddy MZ, Rengasamy KR, Venugopala KN, Jeewon R, Zengin G, Mahomoodally MF (2019) A systematic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications. Crit Rev Food Sci Nutr 59:S210–S243

    Article  CAS  PubMed  Google Scholar 

  95. Tharani M, Rajeshkumar S (2022) AntimicrobialaApplications of Nanodevices prepared from metallic nanoparticles and their role in controlling infectious diseases. In: Smart Nanodevices for point-of-care applications, 1–12. CRC Press

    Google Scholar 

  96. Tyagi P, Ranjan R (2021) Comparative study of the pharmacological, phytochemical and biotechnological aspects of Tribulus terrestris Linn. and Pedalium murex Linn: an overview. Acta Ecologica Sinica

    Google Scholar 

  97. Vankar PS, Bajpai D (2010) Preparation of gold nanoparticles from Mirabilis jalapa flowers

    Google Scholar 

  98. Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crops Prod 41:235–240

    Article  CAS  Google Scholar 

  99. Vijayan S, Divya K, Varghese S, Jisha MS (2020) Antifungal efficacy of chitosan-stabilized biogenic silver nanoparticles against pathogenic Candida spp. isolated from human. Bionanoscience 10(4):974–982

    Google Scholar 

  100. Zahir AA, Rahuman AA (2012) Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet Parasitol 187(3–4):511–520

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachandran Chelliah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barathikannan, K. et al. (2023). Plant-Based Metabolites and Their Uses in Nanomaterials Synthesis: An Overview. In: Husen, A. (eds) Secondary Metabolites Based Green Synthesis of Nanomaterials and Their Applications. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0927-8_1

Download citation

Publish with us

Policies and ethics