Skip to main content

Quadrilateral Mesh Generation Using Hierarchical Templates

  • Conference paper
Proceedings of the 21st International Meshing Roundtable

Summary

This paper describes a quadrilateral mesh generation algorithm ideally suited for transition subdomain meshes in the context of any domain decomposition meshing strategy. The algorithm is based on an automatic hierarchical region decomposition in which, in the last level, it is possible to generate quadrilateral elements with a conventional mapping strategy. In two dimensions, a subdomain is usually a triangle or a rectangle. In this algorithm, a subdomain with two boundary curves may also be allowed. Templates impose restrictions on the number of boundary curve segments of a subdomain to be meshed. The proposed hierarchical template scheme eliminates these restrictions, requiring only an even number of boundary segments. Other algorithms in the literature present similar characteristics. However, the implementation of the hierarchical decomposition and its templates presented here is quite simple compared to other approaches. Six high-level templates are considered for a subdomain, depending on the number of boundary curves and the number of segments on each curve. Several examples demonstrate that this simple idea may result in structured meshes of surprisingly good quality. We also show the possibility of obtaining different meshes for a subdomain with fixed boundary discretization by changing the corners between curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 169.00
Price excludes VAT (USA)
Softcover Book
USD 219.99
Price excludes VAT (USA)
Hardcover Book
USD 219.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cook, W.A., Oakes, W.R.: Mapping Methods for Generation Three-Dimensional Meshes. Computer In Mechanical Engineering, 67–72 (1982)

    Google Scholar 

  2. Mitchell, S.A.: High Fidelity Interval Assignment. International Journal of Computatinal Geometry and Applications 10(4), 399–415 (2000)

    Article  MATH  Google Scholar 

  3. Gordon, W.J., Hall, C.A.: Contruction of Curvilinear Co-ordinate Systems and Aplications to Mesh Generatio. International Journal for Numerical Methods in Engineering 7, 461–477 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cook, W.A.: Body Oriented (natural) Co-ordinates for Generating Three Dimensional Meshes. International Journal for Numerical Methods in Engineering 8, 27–43 (1974)

    Article  MATH  Google Scholar 

  5. Haber, R., Shephard, M.S., Abel, J.F., Gallagher, R.H., Greenberg, D.P.: A General Two-Dimensional, Graphical Finite Element Preprocessor Utilizing Discrete Transfinite Mapping. International Journal for Numerical Methods in Engineering 17, 1015–1044 (1981)

    Article  MATH  Google Scholar 

  6. Haber, R., Abel, J.F.: Discrete Transfinite Mappings for Description and Meshing of Three-Dimensional Surfaces Using Interactive Computer Graphics. International Jornal For Numerical Methods in Enginnering 18, 41–66 (1982)

    Article  MATH  Google Scholar 

  7. Perucchio, R., Ingraffea, A.R., Abel, J.F.: Interative Computer Graphics Preprocessing for Three-Dimensional Finite Element Analysis. International Journal for Numerical Methods in Engineering 18, 909–926 (1982)

    Article  MATH  Google Scholar 

  8. Thompson, J.F., Soni, B.K., Weatherill, N.P.: Handbook of grid generation. CRC Press (1999)

    Google Scholar 

  9. Samet, H.: The Quadtree and Related Hierarchial Data Structures. ACM Computer Surveys 6(2), 187–260 (1984)

    Article  MathSciNet  Google Scholar 

  10. Yerry, M., Shephard, M.: A Modified Quadtree Approach To Finite Element Mesh Generation. IEEE Computer Graphics and Applications 3(1), 39–46 (1983)

    Article  Google Scholar 

  11. Baehmann, P.L., Wittchen, S.L., Shephard, M.S., Grice, K.R., Yerry, M.A.: Robust, geometrically based, automatic two-dimensional mesh generation. International Journal for Numerical Methods in Engineering 24(6), 1043–1078 (1987)

    Article  MATH  Google Scholar 

  12. Yiu, K.F.C., Greaves, D.M., Cruz, S., Saalehi, A., Borthwick, A.G.L.: Quadtree grid generation: Information handling, boundary fitting and CFD applications. Computers & Fluids 25(8), 759–769 (1996)

    Article  MATH  Google Scholar 

  13. Smith, R.J., Johnston, L.J.: Automatic grid generation and flow solution for complex geometries. Reston, VA, ETATS-UNIS: American Institute of Aeronautics and Astronautics (1996)

    Google Scholar 

  14. Liang, X., Ebeida, M.S., Zhang, Y.: Guaranteed-quality all-quadrilateral mesh generation with feature preservation. Computer Methods in Applied Mechanics and Engineering 199, 2072–2083 (2010)

    Article  MATH  Google Scholar 

  15. Yerry, M.A., Shephard, M.S.: Automatic three-dimensional mesh generation by the modified-octree technique. International Journal for Numerical Methods in Engineering 20(11), 1965–1990 (1984)

    Article  MATH  Google Scholar 

  16. Zhang, H., Zhao, G.: Adaptive hexahedral mesh generation based on local domain curvature and thickness using a modified grid-based method. Finite Elements in Analysis and Design 43(9), 691–704 (2007)

    Article  Google Scholar 

  17. Ito, Y., Shih, A.M., Soni, B.K.: Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. International Jornal For Numerical Methods in Enginnering 77, 1809–1833 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schneiders, R., Schindler, R., Weiler, F.: Octree-based generation of hexahedral element meshes. In: Proceedings of 5th International Meshing Roundtable, vol. 1, pp. 205–215 (1996)

    Google Scholar 

  19. Schneiders, R.: Algorithms for Quadrilateral and Hexahedral Mesh Generation. In: Proceedings of the VKI Lecture Series on Computational Fluid Dynamic, VKI-LS, pp. 2000–2004 (2000)

    Google Scholar 

  20. Nowottny, D.: Quadrilateral Mesh Generation via Geometrically Optimized Domain Decomposition. In: Proceedings of 6th International Meshing Roundtable, vol. (1), pp. 309–320 (1997)

    Google Scholar 

  21. Müller-Hannemann, M.: High Quality Quadrilateral Surface Meshing Without Template Restrictions: A New Approach Based on Network Flow Techniques. International Journal of Computational Geometry and Applications 10(3), 285–307 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liziér, M., Siqueira, M., Daniels, J., Silva, C., Nonato, L.: Template-based quadrilateral mesh generation from imaging data. The Visual Computer 27(10), 887–903 (2011)

    Article  Google Scholar 

  23. Daniels, J., Lizier, M., Siqueira, M., Silva, C.T., Nonato, L.G.: Template-based quadrilateral meshing. Computers & Graphics 35(3), 471–482 (2011)

    Article  Google Scholar 

  24. Staten, M.L., Kerr, R.A., Owen, S.J., Blacker, T.D., Stupazzini, M., Shimada, K.: Unconstrained plastering—Hexahedral mesh generation via advancing-front geometry decomposition. International Journal for Numerical Methods in Engineering 81(2), 135–171 (2010)

    MATH  Google Scholar 

  25. Mitchell, S.A.: The All-Hex Geode-Template for Conforming a Diced Tetrahedral Mesh to any Diced Hexahedral Mesh. Engineering with Computers 15, 228–235 (1999)

    Article  MATH  Google Scholar 

  26. Yamakawa, S., Shimada, K.: Hexhoop: Modular Templates For Converting A Hex-Dominant Mesh To An All-Hex Mesh. In: Proceedings of 10th International Meshing Roundtable, vol. (1), pp. 235–246 (2001)

    Google Scholar 

  27. Ansys (2012), Documentation for Ansys - Transition Mapped Quadrilateral Meshing, http://www.kxcad.net/ansys/ANSYS/ansyshelp/Hlp_G_MOD7_4.html

  28. Lee, C.K., Lo, S.H.: Lo A new scheme for the generation of a graded quadrilateral mesh. Computers and Structures (52), 847–857 (1994)

    Article  MATH  Google Scholar 

  29. Scott, M.A., Earp, M.N., Benzley, S.E.: Adaptive sweeping techniques. Engineering with Computers 26, 317–325 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Carlos de Oliveira Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Oliveira Miranda, A.C., Martha, L.F. (2013). Quadrilateral Mesh Generation Using Hierarchical Templates. In: Jiao, X., Weill, JC. (eds) Proceedings of the 21st International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33573-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33573-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33572-3

  • Online ISBN: 978-3-642-33573-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics