Skip to main content

Hodge-de Rham Theory of K-Forms on Carpet Type Fractals

  • Chapter
  • First Online:
Excursions in Harmonic Analysis, Volume 3

Abstract

We outline a Hodge-de Rham theory of k-forms (for k = 0,1,2) on two fractals: the Sierpinski Carpet (SC) and a new fractal that we call the Magic Carpet (MC), obtained by a construction similar to that of SC modified by sewing up the edges whenever a square is removed. Our method is to approximate the fractals by a sequence of graphs, use a standard Hodge-de Rham theory on each graph, and then pass to the limit. While we are not able to prove the existence of the limits, we give overwhelming experimental evidence of their existence, and we compute approximations to basic objects of the theory, such as eigenvalues and eigenforms of the Laplacian in each dimension, and harmonic 1-forms dual to generators of 1-dimensional homology cycles. On MC we observe a Poincare type duality between the Laplacian on 0-forms and 2-forms. On the other hand, on SC the Laplacian on 2-forms appears to be an operator with continuous (as opposed to discrete) spectrum. 2010 Mathematics Subject Classification. Primary: 28A80

* Research supported by the National Science Foundation through the Research Experiences for Undergraduates Program at Cornell,grant DMS- 1156350

† Research supported by the National Science Foundation, grant DMS - 1162045

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 39.99
Price excludes VAT (USA)
Hardcover Book
USD 54.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arron S, Conn Z, Strichartz R, Yu H. Hodge-de Rham theory on fractal graphs and fractals. Preprint 2012.

    Google Scholar 

  2. Aougab T, Dong CY, Strichartz R. Laplacians on a family of Julia sets II. comm Pure Appl Anal. 2013;12:1–58.

    Article  MATH  MathSciNet  Google Scholar 

  3. Barlow M, Bass R. On the resistance of the sierpinski carpet. Proc R Soc Lond A 1990;431:345–60.

    Article  MATH  MathSciNet  Google Scholar 

  4. Barlow M, Bass RF. coupling and Harnack inequalities for Sierpinski carpets. Bull Am Math Soc. 1993;29:208–12.

    Article  MATH  MathSciNet  Google Scholar 

  5. Barlow MT, Bass RF, Kumagai T, Teplyaev A. Uniqueness of Brownian motion on Sierpinski carpets. J Eur Math Soc. (JEMS) 2010;12:655701.

    MathSciNet  Google Scholar 

  6. Begué M, Kalloiatis T, Strichartz R. Harmonic functions and the spectrum of the Laplacian on the Sierpinski carpet. Fractals. 2013;21(1).

    Google Scholar 

  7. Berry T, Heilman S, Strichartz RS. Outer Approximation of the Spectum of a Fractal Laplacian. Exp Math. 2009;18(4):449–80.

    Article  MATH  MathSciNet  Google Scholar 

  8. Cipriani F. Diriclet forms on noncommutative spaces, L.N.M. In: Franz U, Schurmann M, eds. ‘Quantum Potential Thoery’, 1954. New York: Springer-Verlag; 2008; pp. 161–72.

    Google Scholar 

  9. Cipriani F, Sauvageot J. Derivations as square roots of Dirichlet forms. J Funct Anal. 2003;201:78–120.

    Article  MATH  MathSciNet  Google Scholar 

  10. Cipriani F, Guido D, Isola T, Sauvageot J. Differential 1-forms, their integral and potential theory on the Sierpinski gasket. 2011. arXiv: 1105.1995.

    Google Scholar 

  11. Cipriani F, Guido D, Isola T, Sauvageot J. Spectral triples on the Sierpinski gasket, AMS Meeting 'Analysis, Probability and Mathematical Physics on Fractals’, Cornell U.; 2011.

    Google Scholar 

  12. Guido D, Isola T. Singular traces on semi-finite von Neumann algebras. J Funct Anal. 1995;134:451–85.

    Article  MATH  MathSciNet  Google Scholar 

  13. Guido D, Isol T. Dimensions and singular traces for spectral triples, with applications to fractals. J Funct Anal. 2003;203:362–400.

    Article  MATH  MathSciNet  Google Scholar 

  14. Guido D, Isola T. Dimensions and singular traces for spectral triples for fractals in R N, Advances in Operator Algebras and Mathematical Physics. In: Boca F, Bratteli O, Longo R, Siedentop H, Editors. Proceedings of the Conferene held in Sinaia, Romania, June 2003. Theta Series in Advanced Mathematics, Bucharest; 2005.

    Google Scholar 

  15. Heilman S, Strichartz RS. Homotopies of eigenfunctions and the spectrum of the Laplacian on the Sierpinski carpet. Fractals. 2010;18(1):1–34.

    Article  MATH  MathSciNet  Google Scholar 

  16. Hinz M. Limit chains on the Sierpinski gasket. Indiana U. Math. J., to appear.

    Google Scholar 

  17. Ionescu M, Rogers LG, and Teplyaev A. Derivations and Dirichlet forms on fractals. J Functional Analysis 2012;263(8):2141–69.

    Google Scholar 

  18. Kigami J. Analysis on fractals, Cambridge Tracts in Mathematics. Vol. 143. Cambridge: Cambridge University Press; 2001.

    Google Scholar 

  19. Kusuoka S, Zhou XY. Dirichlet form on fractals: poincare constant and resistance. Probab Theory Relat Fields. 2003;93:169–96.

    Article  MathSciNet  Google Scholar 

  20. Molitor D, Ott N, Strichartz RS. Using Peano curves to define Laplacians on fractals. preprint.

    Google Scholar 

  21. Oberlin R, Street B, Strichartz RS. Sampling on the Sierpinski gasket. Exp Math. 2003;12:403–18.

    Google Scholar 

  22. Strichartz R. Fractafolds based on the Sierpinski Gasket and their spectra. Trans Am Math Soc. 2003;355(10):4019–43.

    Article  MATH  MathSciNet  Google Scholar 

  23. Strichartz R. Differential equations on fractals: a tutorial. Princeton University Press; 2006.

    Google Scholar 

  24. Strichartz R. Laplacians on fractals with spectral gaps have nicer Fourier series. Math Res Lett. 2005;12:269–74.

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, Y. “Data and Programs For Hodge DeRham Theory of K-Forms on Carpet Type Fractals” www.math.cornell.edu/~yl534.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Bello∗ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bello∗, J., Li, Y., Strichartz†, R. (2015). Hodge-de Rham Theory of K-Forms on Carpet Type Fractals. In: Balan, R., Begué, M., Benedetto, J., Czaja, W., Okoudjou, K. (eds) Excursions in Harmonic Analysis, Volume 3. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-13230-3_2

Download citation

Publish with us

Policies and ethics