Skip to main content

Regularization of Inverse Problems by Neural Networks

  • Reference work entry
  • First Online:
Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging
  • 3981 Accesses

Abstract

Inverse problems arise in a variety of imaging applications, including computed tomography, non-destructive testing, and remote sensing. Characteristic features of inverse problems are the non-uniqueness and instability of their solutions. Therefore, any reasonable solution method requires the use of regularization tools that select specific solutions and, at the same time, stabilize the inversion process. Recently, data-driven methods using deep learning techniques and neural networks showed to significantly outperform classical solution methods for inverse problems. In this chapter, we give an overview of inverse problems and demonstrate the necessity of regularization concepts for their solution. We show that neural networks can be used for the data-driven solution of inverse problems and review existing deep learning methods for inverse problems. In particular, we view these deep learning methods from the perspective of regularization theory, the mathematical foundation of stable solution methods for inverse problems. This chapter is more than just a review as many of the presented theoretical results extend existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 899.99
Price excludes VAT (USA)
Hardcover Book
USD 949.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A is positive if: y ≥ 0 ⇒Ay ≥ 0.

References

  • Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl. 33(12), 124007 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)

    Article  Google Scholar 

  • Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks. arXiv:1412.6830 (2014)

    Google Scholar 

  • Aljadaany, R., Pal, D.K., Savvides, M.: Douglas-rachford networks: learning both the image prior and data fidelity terms for blind image deconvolution. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 10235–10244 (2019)

    Google Scholar 

  • Arridge, S., Maass, P., Öktem, O., Schönlieb C.: Solving inverse problems using data-driven models. Acta Numer. 28, 1–174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  • Boink, Y.E., Haltmeier, M., Holman, S., Schwab, J.: Data-consistent neural networks for solving nonlinear inverse problems. arXiv:2003.11253 (2020), to apper in Inverse Probl. Imaging

    Google Scholar 

  • Bora, A., Jalal, A., Price, E., Dimakis, A.G.: Compressed sensing using generative models. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 537–546 (2017)

    Google Scholar 

  • Brosch, T., Tam, R., et al.: Manifold learning of brain MRIs by deep learning. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 633–640. Springer (2013)

    Google Scholar 

  • Bubba, T.A., Kutyniok, G., Lassas, M., Maerz, M., Samek, W., Siltanen, S., Srinivasan, V.: Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography. Inverse Probl. 35(6), 064002 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, D., Davies, M.E.: Deep decomposition learning for inverse imaging problems. In European Conference on Computer Vision, pp. 510–526). Springer, Cham (2020)

    Google Scholar 

  • Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: Advances in Neural Information Processing Systems, pp. 6571–6583 (2018)

    Google Scholar 

  • Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Dittmer, S., Maass, P.: A projectional ansatz to reconstruction. arXiv:1907.04675 (2019)

    Google Scholar 

  • Dittmer, S., Kluth, T., Maass, P., Baguer, D.O.: Regularization by architecture: a deep prior approach for inverse problems. J. Math. Imaging Vis. 62, 456–470 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Kluwer Academic Publishers Group, Dordrecht (1996)

    Book  MATH  Google Scholar 

  • Georg, M., Souvenir, R., Hope, A., Pless, R.: Manifold learning for 4D CT reconstruction of the lung. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  • Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of 13th International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, London (2016)

    MATH  Google Scholar 

  • Grasmair, M., Haltmeier, M., Scherzer, O.: Sparse regularization with lq penalty term. Inverse Probl. 24(5), 055020 (2008)

    Article  MATH  Google Scholar 

  • Han, Y., Yoo, J.J., Ye, J.C.: Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis (2016). http://arxiv.org/abs/1611.06391

    Google Scholar 

  • He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  • Huang, Y., Preuhs, A., Manhart, M., Lauritsch, G., Maier, A.: Data consistent ct reconstruction from insufficient data with learned prior images. arXiv:2005.10034 (2020)

    Google Scholar 

  • Ivanov, V.K., Vasin, V.V., Tanana, V.P.: Theory of Linear Ill-Posed Problems and Its Applications. Inverse and Ill-Posed Problems Series, 2nd edn. VSP, Utrecht, (2002). Translated and revised from the 1978 Russian original

    Google Scholar 

  • Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Kobler, E., Klatzer, T., Hammernik, K., Pock, T.: Variational networks: connecting variational methods and deep learning. In: German Conference on Pattern Recognition, pp. 281–293. Springer (2017)

    Google Scholar 

  • Kofler, A., Haltmeier, M., Kolbitsch, C., Kachelrieß, M., Dewey, M.: A U-Nets cascade for sparse view computed tomography. In: Proceedings of 1st Workshop on Machine Learning for Medical Image Reconstruction, pp. 91–99. Springer (2018)

    Google Scholar 

  • Kofler, A., Haltmeier, M., Schaeffter, T., Kachelrieß, M., Dewey, M., Wald, C., Kolbitsch, C.: Neural networks-based regularization of large-scale inverse problems in medical imaging. Phys. Med. Biol. 65, 135003 (2020)

    Article  Google Scholar 

  • LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  • Li, H., Schwab, J., Antholzer, S., Haltmeier, M.: NETT: solving inverse problems with deep neural networks. Inverse Probl. 36, 065005 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Lindenstrauss, J., Tzafriri, L.: On the complemented subspaces problem. Israel J. Math. 9(2), 263–269 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • Lunz, S., Öktem, O., Schönlieb, C.: Adversarial regularizers in inverse problems. In: Advances in Neural Information Processing Systems, vol. 31, pp. 8507–8516 (2018)

    Google Scholar 

  • Mardani, M., Gong, E., Cheng, J.Y., Vasanawala, S.S., Zaharchuk, G., Xing, L., Pauly, J.M.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imag. 38(1), 167–179 (2018)

    Article  Google Scholar 

  • Nashed, M.Z.: Inner, outer, and generalized inverses in banach and hilbert spaces. Numer. Func. Anal. Opt. 9(3–4), 261–325 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Obmann, D., Nguyen, L., Schwab, J., Haltmeier, M.: Sparse aNETT for solving inverse problems with deep learning. In 2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops) (pp. 1–4). IEEE (2020a)

    Google Scholar 

  • Obmann, D., Schwab, J., Haltmeier, M.: Deep synthesis network for regularizing inverse problems. Inverse Problems, 37(1), 015005 (2020b)

    Article  MathSciNet  MATH  Google Scholar 

  • Obmann, D., Nguyen, L., Schwab, J., Haltmeier, M.: Augmented NETT regularization of inverse problems. J. Phys. Commun. 5(10), 105002 (2021)

    Article  Google Scholar 

  • Phillips, R.S.: On linear transformations. Trans. Am. Math. Soc. 48(3), 516–541 (1940)

    Article  MATH  Google Scholar 

  • Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv:1710.05941 (2017)

    Google Scholar 

  • Resmerita, E., Anderssen, R.S.: Joint additive Kullback–Leibler residual minimization and regularization for linear inverse problems. Math. Methods Appl. Sci. 30(13), 1527–1544 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Roth, S., Black, M.J.: Fields of experts: a framework for learning image priors. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 860–867. IEEE (2005)

    Google Scholar 

  • Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Applied Mathematical Sciences, vol. 167. Springer, New York (2009)

    Google Scholar 

  • Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for MR image reconstruction. In: Proceedings of Information Processing in Medical Imaging, pp. 647–658. Springer (2017)

    Google Scholar 

  • Schwab, J., Antholzer, S., Haltmeier, M.: Deep null-space learning for inverse problems: convergence analysis and rates. Inverse Probl. 35(2), 025008 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Schwab, J., Antholzer, S., Haltmeier, M.: Big in Japan: regularizing networks for solving inverse problems. J. Math. Imaging Vis. 62, 445–455 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Sulam, J., Aberdam, A., Beck, A., Elad, M.: On multi-layer basis pursuit, efficient algorithms and convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 1968–1980 (2019)

    Article  Google Scholar 

  • Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  • Van Veen, D., Jalal, A., Soltanolkotabi, M., Price, E., Vishwanath, S., Dimakis, A.G.: Compressed sensing with deep image prior and learned regularization. arXiv:1806.06438 (2018)

    Google Scholar 

  • Wachinger, C., Yigitsoy, M., Rijkhorst, E., Navab, N.: Manifold learning for image-based breathing gating in ultrasound and MRI. Med. Image Anal. 16(4), 806–818 (2012)

    Article  Google Scholar 

  • Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-net for compressive sensing MRI. In: Proceedings of 30th International Conference on Neural Information Processing Systems, pp. 10–18 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Haltmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haltmeier, M., Nguyen, L. (2023). Regularization of Inverse Problems by Neural Networks. In: Chen, K., Schönlieb, CB., Tai, XC., Younes, L. (eds) Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-98661-2_81

Download citation

Publish with us

Policies and ethics