Skip to main content

Virtual Multi-view Fusion for 3D Semantic Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12369))

Included in the following conference series:

Abstract

Semantic segmentation of 3D meshes is an important problem for 3D scene understanding. In this paper we revisit the classic multiview representation of 3D meshes and study several techniques that make them effective for 3D semantic segmentation of meshes. Given a 3D mesh reconstructed from RGBD sensors, our method effectively chooses different virtual views of the 3D mesh and renders multiple 2D channels for training an effective 2D semantic segmentation model. Features from multiple per view predictions are finally fused on 3D mesh vertices to predict mesh semantic segmentation labels. Using the large scale indoor 3D semantic segmentation benchmark of ScanNet, we show that our virtual views enable more effective training of 2D semantic segmentation networks than previous multiview approaches. When the 2D per pixel predictions are aggregated on 3D surfaces, our virtual multiview fusion method is able to achieve significantly better 3D semantic segmentation results compared to all prior multiview approaches and recent 3D convolution approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armeni, I., Sax, A., Zamir, A.R., Savarese, S.: Joint 2D–3D-Semantic Data for Indoor Scene Understanding. ArXiv e-prints, February 2017

    Google Scholar 

  2. Armeni, I., et al.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  3. Boulch, A., Guerry, J., Le Saux, B., Audebert, N.: Snapnet: 3D point cloud semantic labeling with 2D deep segmentation networks. Comput. Graph. 71, 189–198 (2018)

    Article  Google Scholar 

  4. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  5. Chiang, H., Lin, Y., Liu, Y., Hsu, W.H.: A unified point-based framework for 3D segmentation. In: 2019 International Conference on 3D Vision (3DV), pp. 155–163, September 2019

    Google Scholar 

  6. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  7. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)

    Google Scholar 

  8. Choy, C., Park, J., Koltun, V.: Fully convolutional geometric features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8958–8966 (2019)

    Google Scholar 

  9. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  10. Dai, A., Nießner, M.: 3DMV: joint 3D-multi-view prediction for 3D semantic scene segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 458–474. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_28

    Chapter  Google Scholar 

  11. Graham, B., Engelcke, M., van der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9224–9232 (2018)

    Google Scholar 

  12. Guerry, J., Boulch, A., Le Saux, B., Moras, J., Plyer, A., Filliat, D.: Snapnet-R: consistent 3D multi-view semantic labeling for robotics. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 669–678 (2017)

    Google Scholar 

  13. Han, L., Zheng, T., Xu, L., Fang, L.: Occuseg: occupancy-aware 3D instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2940–2949 (2020)

    Google Scholar 

  14. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.: MeshCNN: a network with an edge. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  15. Hermans, A., Floros, G., Leibe, B.: Dense 3D semantic mapping of indoor scenes from RGB-D images. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2631–2638. IEEE (2014)

    Google Scholar 

  16. Hu, Z., Zhen, M., Bai, X., Fu, H., Tai, C.l.: JSENet: joint semantic segmentation and edge detection network for 3D point clouds. In: ECCV (2020)

    Google Scholar 

  17. Huang, J., Zhang, H., Yi, L., Funkhouser, T., Nießner, M., Guibas, L.J.: Texturenet: consistent local parametrizations for learning from high-resolution signals on meshes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4440–4449 (2019)

    Google Scholar 

  18. Jaritz, M., Gu, J., Su, H.: Multi-view pointnet for 3D scene understanding. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  19. Lai, K., Bo, L., Fox, D.: Unsupervised feature learning for 3D scene labeling. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 3050–3057. IEEE (2014)

    Google Scholar 

  20. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  21. Lawin, F.J., Danelljan, M., Tosteberg, P., Bhat, G., Khan, F.S., Felsberg, M.: Deep projective 3D semantic segmentation. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10424, pp. 95–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64689-3_8

    Chapter  Google Scholar 

  22. Li, W., et al.: Interiornet: mega-scale multi-sensor photo-realistic indoor scenes dataset. arXiv preprint arXiv:1809.00716 (2018)

  23. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: Advances in Neural Information Processing Systems, pp. 820–830 (2018)

    Google Scholar 

  24. Ma, L., Stückler, J., Kerl, C., Cremers, D.: Multi-view deep learning for consistent semantic mapping with RGB-D cameras. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 598–605. IEEE (2017)

    Google Scholar 

  25. McCormac, J., Handa, A., Davison, A., Leutenegger, S.: Semanticfusion: dense 3D semantic mapping with convolutional neural networks. In: 2017 IEEE International Conference on Robotics and automation (ICRA), pp. 4628–4635. IEEE (2017)

    Google Scholar 

  26. McCormac, J., Handa, A., Leutenegger, S., Davison, A.J.: Scenenet RGB-D: can 5m synthetic images beat generic imagenet pre-training on indoor segmentation? In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2678–2687 (2017)

    Google Scholar 

  27. Mottaghi, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014

    Google Scholar 

  28. Narita, G., Seno, T., Ishikawa, T., Kaji, Y.: Panopticfusion: online volumetric semantic mapping at the level of stuff and things. arXiv preprint arXiv:1903.01177 (2019)

  29. Pham, Q.H., Nguyen, T., Hua, B.S., Roig, G., Yeung, S.K.: JSIS3D: joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8827–8836 (2019)

    Google Scholar 

  30. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  31. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  32. Riegler, G., Osman Ulusoy, A., Geiger, A.: OctNet: Learning deep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)

    Google Scholar 

  33. Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. arXiv preprint arXiv:1912.13192 (2019)

  34. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1746–1754 (2017)

    Google Scholar 

  35. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  36. Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3D. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  37. Tchapmi, L., Choy, C., Armeni, I., Gwak, J., Savarese, S.: Segcloud: semantic segmentation of 3D point clouds. In: 2017 International Conference on 3D Vision (3DV), pp. 537–547. IEEE (2017)

    Google Scholar 

  38. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6411–6420 (2019)

    Google Scholar 

  39. Valada, A., Mohan, R., Burgard, W.: Self-supervised model adaptation for multimodal semantic segmentation. Int. J. Comput. Vis. 1–47 (2019)

    Google Scholar 

  40. Valentin, J., et al.: SemanticPaint: Interactive 3D labeling and learning at your fingertips. In: ACM Transactions on Graphics. ACM (2015)

    Google Scholar 

  41. Vineet, V., et al.: Incremental dense semantic stereo fusion for large-scale semantic scene reconstruction. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 75–82. IEEE (2015)

    Google Scholar 

  42. Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric continuous convolutional neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  43. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9621–9630 (2019)

    Google Scholar 

  44. Yan, X., Zheng, C., Li, Z., Wang, S., Cui, S.: PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling. arXiv preprint arXiv:2003.00492 (2020)

  45. Ye, X., Li, J., Huang, H., Du, L., Zhang, X.: 3D recurrent neural networks with context fusion for point cloud semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 415–430. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_25

    Chapter  Google Scholar 

  46. Zhang, C., Liu, Z., Liu, G., Huang, D.: Large-scale 3D semantic mapping using monocular vision. In: 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), pp. 71–76. IEEE (2019)

    Google Scholar 

  47. Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5287–5295 (2017)

    Google Scholar 

  48. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 633–641 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Kundu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 987 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kundu, A. et al. (2020). Virtual Multi-view Fusion for 3D Semantic Segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12369. Springer, Cham. https://doi.org/10.1007/978-3-030-58586-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58586-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58585-3

  • Online ISBN: 978-3-030-58586-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics