-
Download the model weights model-f6b98070.pb and model-small.pb and place the file in the
/tf/
folder. -
Set up dependencies:
# install OpenCV
pip install --upgrade pip
pip install opencv-python
# install TensorFlow
pip install -I grpcio tensorflow==2.3.0 tensorflow-addons==0.11.2 numpy==1.18.0
-
Place one or more input images in the folder
tf/input
. -
Run the model:
python tf/run_pb.py
Or run the small model:
python tf/run_pb.py --model_weights model-small.pb --model_type small
-
The resulting inverse depth maps are written to the
tf/output
folder.
-
Download the model weights model-f6b98070.onnx and model-small.onnx and place the file in the
/tf/
folder. -
Set up dependencies:
# install OpenCV
pip install --upgrade pip
pip install opencv-python
# install ONNX
pip install onnx==1.7.0
# install ONNX Runtime
pip install onnxruntime==1.5.2
-
Place one or more input images in the folder
tf/input
. -
Run the model:
python tf/run_onnx.py
Or run the small model:
python tf/run_onnx.py --model_weights model-small.onnx --model_type small
-
The resulting inverse depth maps are written to the
tf/output
folder.
-
Download the model weights model-f6b98070.pt and place the file in the root folder.
-
Set up dependencies:
# install OpenCV
pip install --upgrade pip
pip install opencv-python
# install PyTorch TorchVision
pip install -I torch==1.7.0 torchvision==0.8.0
# install TensorFlow
pip install -I grpcio tensorflow==2.3.0 tensorflow-addons==0.11.2 numpy==1.18.0
# install ONNX
pip install onnx==1.7.0
# install ONNX-TensorFlow
git clone https://github.com/onnx/onnx-tensorflow.git
cd onnx-tensorflow
git checkout 095b51b88e35c4001d70f15f80f31014b592b81e
pip install -e .
-
Run the converter:
python tf/make_onnx_model.py
-
The resulting
model-f6b98070.onnx
file is written to the/tf/
folder.
The code was tested with Python 3.6.9, PyTorch 1.5.1, TensorFlow 2.2.0, TensorFlow-addons 0.8.3, ONNX 1.7.0, ONNX-TensorFlow (GitHub-master-17.07.2020) and OpenCV 4.3.0.
Please cite our paper if you use this code or any of the models:
@article{Ranftl2019,
author = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun},
title = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
year = {2020},
}
MIT License