Jump to content

Acetoin

From Wikipedia, the free encyclopedia
(Redirected from Acetyl methyl carbinol)
Acetoin
3-Hydroxybutanone
Names
Preferred IUPAC name
3-Hydroxybutan-2-one
Other names
3-Hydroxybutanone
Acetyl methyl carbinol
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.007.432 Edit this at Wikidata
EC Number
  • 208-174-1
KEGG
RTECS number
  • EL8790000
UNII
  • InChI=1S/C4H8O2/c1-3(5)4(2)6/h3,5H,1-2H3 checkY
    Key: ROWKJAVDOGWPAT-UHFFFAOYSA-N checkY
  • InChI=1/C4H8O2/c1-3(5)4(2)6/h3,5H,1-2H3
    Key: ROWKJAVDOGWPAT-UHFFFAOYAD
  • CC(=O)C(C)O
  • (R): CC(=O)[C@@H](C)O
  • (S): CC(=O)[C@H](C)O
Properties
C4H8O2
Molar mass 88.106 g·mol−1
Appearance colorless liquid
Odor bland, yogurt-like
Density 1.012 g/cm3
Melting point 15 °C (59 °F; 288 K)
Boiling point 148 °C (298 °F; 421 K)
1000 g/L (20 °C)
Solubility in other solvents Soluble in alcohol
Slightly soluble in ether, petroleum ether
Miscible in propylene glycol
Insoluble in vegetable oil
log P -0.36
Acidity (pKa) 13.72
-39.4
1.4171
Hazards
Flash point 41 °C (106 °F; 314 K)
Lethal dose or concentration (LD, LC):
> 5000 mg/kg (rat, oral)
Safety data sheet (SDS) MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Acetoin, also known as 3-hydroxybutanone or acetyl methyl carbinol, is an organic compound with the formula CH3CH(OH)C(O)CH3. It is a colorless liquid with a pleasant, buttery odor. It is chiral. The form produced by bacteria is (R)-acetoin.[1]

Production in bacteria

[edit]

Acetoin is a neutral, four-carbon molecule used as an external energy store by a number of fermentative bacteria. It is produced by the decarboxylation of alpha-acetolactate, a common precursor in the biosynthesis of branched-chain amino acids. Owing to its neutral nature, production and excretion of acetoin during exponential growth prevents over-acidification of the cytoplasm and the surrounding medium that would result from accumulation of acidic metabolic products, such as acetic acid and citric acid. Once superior carbon sources are exhausted, and the culture enters stationary phase, acetoin can be used to maintain the culture density.[2] The conversion of acetoin into acetyl-CoA is catalysed by the acetoin dehydrogenase complex, following a mechanism largely analogous to the pyruvate dehydrogenase complex; however, as acetoin is not a 2-oxoacid, it does not undergo decarboxylation by the E1 enzyme; instead, a molecule of acetaldehyde is released.[3] In some bacteria, acetoin can also be reduced to 2,3-butanediol by acetoin reductase/2,3-butanediol dehydrogenase.

The Voges-Proskauer test is a commonly used microbiological test for acetoin production.[4]

Uses

[edit]

Food ingredients

[edit]

Acetoin, along with diacetyl, is one of the compounds that gives butter its characteristic flavor. Because of this, manufacturers of partially hydrogenated oils typically add artificial butter flavor – acetoin and diacetyl – (along with beta carotene for the yellow color) to the final product.[5]

Acetoin can be found in apples, yogurt, asparagus, blackcurrants, blackberries, wheat, broccoli, brussels sprouts, cantaloupes, and maple syrup.[6][7][8]

Acetoin is used as a food flavoring (in baked goods) and as a fragrance.

Electronic cigarettes

[edit]

It is used in liquids for electronic cigarettes to give a buttery or caramel flavor.[9]

See also

[edit]

References

[edit]
  1. ^ Albert Gossauer: Struktur und Reaktivität der Biomoleküle, Verlag Helvetica Chimica Acta, Zürich, 2006, Seite 285, ISBN 978-3-906390-29-1.
  2. ^ Xiao, Z.; Xu, P. (2007). "Acetoin metabolism in bacteria". Crit Rev Microbiol. 33 (2): 127–140. doi:10.1080/10408410701364604. PMID 17558661. S2CID 46151943.
  3. ^ Oppermann, F.B.; Steinbuchel, A. (1994). "Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system". J. Bacteriol. 176 (2): 469–485. doi:10.1128/jb.176.2.469-485.1994. PMC 205071. PMID 8110297.
  4. ^ Speckman, R.A.; Collins, E.B. (1982). "Specificity of the Westerfeld adaptation of the Voges-Proskauer test". Appl Environ Microbiol. 44 (1): 40–43. Bibcode:1982ApEnM..44...40S. doi:10.1128/aem.44.1.40-43.1982. PMC 241965. PMID 6751225.
  5. ^ Pavia et al., Introduction to Organic Laboratory Techniques, 4th ed., ISBN 978-0-495-28069-9
  6. ^ "Sampling and Analytical Methods: Acetoin, Diacetyl, 1012". Archived from the original on 2018-06-04.
  7. ^ "Allendale Columbia | STEM".
  8. ^ "Evaluation of Natural Acetyl Methyl Carbinol|Flavorist". www.fks.com.
  9. ^ Committee on the Review of the Health Effects of Electronic Nicotine Delivery Systems, National Academies of Sciences (2018). "Chapter 5: Toxicology of E-Cigarette Constituents". In Eaton, David L.; Kwan, Leslie Y.; Stratton, Kathleen (eds.). Public Health Consequences of E-Cigarettes. National Academies Press. p. 175. ISBN 9780309468343. PMID 29894118.