Jump to content

meta-Chloroperoxybenzoic acid

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Eggilicious (talk | contribs) at 13:02, 20 May 2012. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

meta-Chloroperoxybenzoic acid
Names
IUPAC name
3-chloroperoxybenzoic acid
Other names
meta-chloroperoxybenzoic acid;

m-chloroperoxybenzoic acid; meta-chloroperbenzoic acid; 3-chloroperbenzoic acid;

mCPBA
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.012.111 Edit this at Wikidata
RTECS number
  • SD9470000
  • InChI=1S/C7H5ClO4/c8-12-11-6-3-1-2-5(4-6)7(9)10/h1-4H,(H,9,10) checkY
    Key: FQAWBGAIOYWONH-UHFFFAOYSA-N checkY
  • InChI=1/C7H5ClO4/c8-12-11-6-3-1-2-5(4-6)7(9)10/h1-4H,(H,9,10)
    Key: FQAWBGAIOYWONH-UHFFFAOYAN
  • ClOOc1cc(ccc1)C(O)=O
Properties
C7H5ClO3
Molar mass 172.57 g/mol
Appearance White powder
Melting point 92 - 94 °C, decomposes
Acidity (pKa) 7.57
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Oxidizing, corrosive
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

meta-Chloroperoxybenzoic acid (mCPBA) is a peroxycarboxylic acid used widely as an oxidant in organic synthesis. mCPBA is often preferred to other peroxy acids because of its relative ease of handling. The main areas of use are the conversion of ketones to esters (Baeyer-Villiger oxidation), epoxidation of alkenes (Prilezhaev reaction), conversion of silyl enol ethers to silyl α-hydroxy ketones (Rubottom oxidation), oxidation of sulfides to sulfoxides and sulfones, and oxidation of amines to produce amine oxides.[1] mCPBA is a strong oxidizing agent that may cause fire upon contact with flammable material.

Preparation

mCPBA can be prepared by reacting m-chlorobenzoyl chloride with hydrogen peroxide in the presence of magnesium sulfate, aqueous sodium hydroxide, and dioxane, followed by acidification.[2]

Availability and purity

As a pure substance, m-CPBA can be detonated by shock or by sparks. It is therefore sold commercially as a much more stable mixture that is less than 72% m-CPBA, with the balance made up of m-chlorobenzoic acid (10%) and water.[1] The peracid can be purified by washing the commercial material with a slightly basic buffer solution and then drying.[3] Peracids are generally slightly less acidic than their carboxylic acid counterparts, so one can extract the acid impurity by careful control of pH. The purified material is reasonably stable against decomposition if stored at low temperatures in a plastic container.

In reactions where the exact amount of m-CPBA must be controlled, a sample can be titrated to determine the exact amount of active oxidant.

Epoxidation example

The following reaction shows the reaction of cyclohexene with mCPBA to give an epoxide; the reaction mechanism is not shown.

The epoxidation mechanism is concerted: the cis or trans geometry of the alkene starting material is retained in the epoxide ring of the product.

References

  1. ^ a b "3-Chloroperoxybenzoic acid". Organic Chemistry Portal.
  2. ^ Richard N. McDonald, Richard N. Steppel, and James E. Dorsey (1988). "m-Chloroperbenzoic Acid". Organic Syntheses{{cite journal}}: CS1 maint: multiple names: authors list (link); Collected Volumes, vol. 6, p. 276.
  3. ^ Purification of Laboratory Chemicals (4th ed.). Oxford: Butterworth-Heinemann. 1996. p. 145. ISBN 0-7506-3761-7. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)