Skip to main content
Log in

Concept of temperature in multi-horizon spacetimes: analysis of Schwarzschild–De Sitter metric

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In case of spacetimes with single horizon, there exist several well- established procedures for relating the surface gravity of the horizon to a thermodynamic temperature. Such procedures, however, cannot be extended in a straightforward manner when a spacetime has multiple horizons. In particular, it is not clear whether there exists a notion of global temperature characterizing the multi-horizon spacetimes. We examine the conditions under which a global temperature can exist for a spacetime with two horizons using the example of Schwarzschild–De Sitter (SDS) spacetime. We systematically extend different procedures (like the expectation value of stress tensor, response of particle detectors, periodicity in the Euclidean time etc.) for identifying a temperature in the case of spacetimes with single horizon to the SDS spacetime. This analysis is facilitated by using a global coordinate chart which covers the entire SDS manifold. We find that all the procedures lead to a consistent picture characterized by the following features: (a) In general, SDS spacetime behaves like a non-equilibrium system characterized by two temperatures. (b) It is not possible to associate a global temperature with SDS spacetime except when the ratio of the two surface gravities is rational. (c) Even when the ratio of the two surface gravities is rational, the thermal nature depends on the coordinate chart used. There exists a global coordinate chart in which there is global equilibrium temperature while there exist other charts in which SDS behaves as though it has two different temperatures. The coordinate dependence of the thermal nature is reminiscent of the flat spacetime in Minkowski and Rindler coordinate charts. The implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padmanabhan T. (2002). Class. Quant. Grav. 9: 5387

    Article  ADS  MathSciNet  Google Scholar 

  2. Padmanabhan T. (2002). Mod. Phys. Lett. A17: 923 gr-qc/0202078

    ADS  MathSciNet  Google Scholar 

  3. Padmanabhan T. (2002). Class. Quant. Grav. 19: 3551 gr-qc/0110046

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Padmanabhan T. (2005). Phys. Rep. 406: 49 gr-qc/0311036

    Article  ADS  MathSciNet  Google Scholar 

  5. Padmanabhan, T.: Braz. J. Phys. (special issue) 35, 362 (2005), gr-qc/0412068

  6. Gibbons G.W. and Hawking S.W. (1977). Phys. Rev. D15: 2738

    ADS  MathSciNet  Google Scholar 

  7. Shankaranarayanan S. (2003). Phys. Rev. D67: 084026 gr-qc/0301090

    ADS  MathSciNet  Google Scholar 

  8. Srinivasan K. and Padmanabhan T. (1999). Phys. Rev. D60: 024007 gr-qc/9812028

    ADS  MathSciNet  Google Scholar 

  9. Shankaranarayanan S., Srinivasan K. and Padmanabhan T. (2001). Mod. Phys. Lett. A16: 571 gr-qc/ 0007022

    MathSciNet  Google Scholar 

  10. Vagenas E.C. (2002). Nuovo Cim. 117B: 899 hep-th/0111047

    ADS  Google Scholar 

  11. Tadaki S.-I. and Takagi S. (1990). Prog. Theor. Phys. 83: 941

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Tadaki S. and Takagi S. (1990). Prog. Theor. Phys. 83: 1126

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Markovic D. and Unruh W.G. (1991). Phys. Rev. D43: 332

    ADS  MathSciNet  Google Scholar 

  14. Bousso R. and Hawking S.W. (1998). Phys. Rev. D57: 2436 hep-th/9709224

    ADS  MathSciNet  Google Scholar 

  15. Nojiri S. and Odintsov S.D. (1999). Phys. Rev. D59: 044026 hep-th/9804033

    ADS  MathSciNet  Google Scholar 

  16. Nojiri S. and Odintsov S.D. (2000). Int. J. Mod. Phys. A15: 989 hep-th/9905089

    ADS  MathSciNet  Google Scholar 

  17. Wu Z.C. (2000). Gen. Relat. Gravity 32: 1823 gr-qc/9911078

    Article  MATH  ADS  Google Scholar 

  18. Wu Y.-Q., Zhang L.-C. and Zhao R. (2001). Int. J. Theor. Phys. 40: 1001

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhao R., Zhang J.-F. and Zhang L.-C. (2001). Mod. Phys. Lett. A16: 719

    ADS  MathSciNet  Google Scholar 

  20. Hiscock W.A. (1989). Phys. Rev. D39: 1067

    ADS  MathSciNet  Google Scholar 

  21. Deser S. and Levin O. (1997). Class. Quant. Gravity 14: L163 gr-qc/9706018

    Article  ADS  MathSciNet  Google Scholar 

  22. Zhao R., Zhang L.-C. and Li Z.-G. (1998). Nuovo Cim. B 113: 291

    ADS  Google Scholar 

  23. Deser S. and Levin O. (1999). Phys. Rev. D59: 064004 hep-th/9809159

    ADS  MathSciNet  Google Scholar 

  24. Myung Y.S. (2001). Mod. Phys. Lett. A16: 2353 hep-th/0110123

    ADS  MathSciNet  Google Scholar 

  25. Wu S.Q. and Cai X. (2001). Nuovo Cim. 116B: 907 hep-th/0108033

    ADS  MathSciNet  Google Scholar 

  26. Garattini R. (2001). Class. Quant. Grav. 18: 571 gr-qc/0012078

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Ghezelbash A.M. and Mann R.B. (2002). JHEP 01: 005 hep-th/0111217

    Article  MathSciNet  Google Scholar 

  28. Cvetic M., Nojiri S. and Odintsov S.D. (2002). Nucl. Phys. B628: 295 hep-th/0112045

    Article  ADS  MathSciNet  Google Scholar 

  29. Wu S.Q. and Cai X. (2002). Int. J. Theor. Phys. 41: 559 gr-qc/0111045

    Article  MATH  MathSciNet  Google Scholar 

  30. Danielsson U.H. (2002). JHEP 03: 020 hep-th/0110265

    Article  ADS  MathSciNet  Google Scholar 

  31. Nojiri S., Odintsov S.D. and Ogushi S. (2003). Int. J. Mod. Phys. A18: 3395 hep-th/0212047

    ADS  MathSciNet  Google Scholar 

  32. Guido D. and Longo R. (2003). Annales Henri Poincare 4: 1169 gr-qc/0212025

    Article  MathSciNet  Google Scholar 

  33. Gomberoff A. and Teitelboim C. (2003). Phys. Rev. D67: 104024

    ADS  MathSciNet  Google Scholar 

  34. Corichi A. and Gomberoff A. (2004). Phys. Rev. D69: 064016 hep-th/0311030

    ADS  MathSciNet  Google Scholar 

  35. Davies P.C.W. and Davis T.M. (2002). Founds. Phys. 32(12): 1877 astro-ph/0310522

    Article  MathSciNet  Google Scholar 

  36. Davis T.M., Davies P.C.W. and Lineweaver C.H. (2003). Class. Quant. Grav. 20: 2753 astro-ph/0305121

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Teitelboim, C.: (2002) hep-th/0203258

  38. Kim, Y.-b., Oh, C.Y., Park, N. (2002) hep-th/0212326

  39. Cai R.-G. and Guo Q. (2004). Phys. Rev. D69: 104025 hep-th/0311020

    ADS  MathSciNet  Google Scholar 

  40. Cai R.-G. (2002). Nucl. Phys. B628: 375 hep-th/0112253

    Article  ADS  Google Scholar 

  41. Cai R.-G. (2002). Phys. Lett. B525: 331 hep-th/0111093

    ADS  Google Scholar 

  42. Cai R.-G., Ji J.-Y. and Soh K.-S. (1998). Class. Quant. Grav. 15: 2783 gr-qc/9708062

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Klemm D. (2002). Nucl. Phys. B625: 295 hep-th/0106247

    Article  ADS  MathSciNet  Google Scholar 

  44. Chao W.-Z. (1997). Int. J. Mod. Phys. D6: 199 gr-qc/9801020

    Google Scholar 

  45. Maeda K., Koike T., Narita M. and Ishibashi A. (1998). Phys. Rev. D 57: 3503 gr-qc/9712029

    Article  ADS  MathSciNet  Google Scholar 

  46. Lin F.-L. and Soo C. (1999). Class. Quant. Gravity 16: 551 gr-qc/9708049

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Perlmutter S., Aldering G., Goldhaber G., Knop R.A., Nugent P., Castro P.G., Deustua S., Fabbro S., Goobar A. and Groom D.E., (1999). Astrophys. J. 517: 565

    Article  ADS  Google Scholar 

  48. Padmanabhan T. (2003). Phys. Rept. 380: 235

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. Padmanabhan T. (2005). Curr. Sci. 88: 1057 astro-ph/0411044

    ADS  Google Scholar 

  50. Sahni V. and Starobinsky A.A. (2000). Int. J. Mod. Phys. D 9: 373 astro-ph/9904398

    ADS  Google Scholar 

  51. Peebles P.J. and Ratra B. (2003). Rev. Mod. Phys. 75: 559

    Article  ADS  MathSciNet  Google Scholar 

  52. Padmanabhan T. and Choudhury T.R. (2003). Mon. Not. R. Astron. Soc. 344: 823

    Article  ADS  Google Scholar 

  53. Choudhury T.R. and Padmanabhan T. (2005). Astron. Astrophys. 429: 807 astro-ph/0311622

    Article  MATH  ADS  Google Scholar 

  54. Padmanabhan T. and Choudhury T.R. (2002). Phys. Rev. D66: 081301 hep-th/0205055

    ADS  Google Scholar 

  55. Bagla J.S., Jassal H.K. and Padmanabhan T. (2003). Phys. Rev. D67: 063504

    ADS  Google Scholar 

  56. Padmanabhan T. (2002). Phys. Rev. D 66: 021301 hep-th/0204150

    Article  ADS  Google Scholar 

  57. Medved A.J.M. (2002). Phys. Rev. D66: 124009 hep-th/0207247

    ADS  MathSciNet  Google Scholar 

  58. Birrell N.D. and Davies P.C.W. (1982). Quantum Fields in Curved Space. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  59. Sriramkumar L. and Padmanabhan T. (2002). Int. J. Mod. Phys. D11: 1 gr-qc/9903054

    ADS  MathSciNet  Google Scholar 

  60. Boulware D.G. (1975). Phys. Rev. D11: 1404

    ADS  MathSciNet  Google Scholar 

  61. Hartle J.B. and Hawking S.W. (1976). Phys. Rev. D13: 2188

    ADS  Google Scholar 

  62. Unruh W.G. (1976). Phys. Rev. D14: 870

    ADS  Google Scholar 

  63. Christensen S.M. and Fulling S.A. (1977). Phys. Rev. D15: 2088

    ADS  Google Scholar 

  64. Wald R.M. (1984). General relativity. University of Chicago Press, Chicago

    MATH  Google Scholar 

  65. Bousso R. and Hawking S.W. (1995). Phys. Rev. D52: 5659

    ADS  MathSciNet  Google Scholar 

  66. Ginsparg P. and Perry M.J. (1983). Nucl. Phys. B 222: 245

    Article  ADS  MathSciNet  Google Scholar 

  67. Gibbons G.W. and Hawking S.W. (1979). Commun. Math. Phys. 66: 291

    Article  ADS  MathSciNet  Google Scholar 

  68. Rovelli C. (1998). Living Rev. Relat. 1: 1

    ADS  MathSciNet  Google Scholar 

  69. Padmanabhan T. (2004). Class. Quant. Gravity 21: L1 gr-qc/0310027

    Article  MATH  ADS  MathSciNet  Google Scholar 

  70. Choudhury T.R. and Padmanabhan T. (2004). Phys. Rev. D69: 064033 gr-qc/0311064

    ADS  MathSciNet  Google Scholar 

  71. Cardoso V., Natario J. and Schiappa R. (2004). J. Math. Phys. 45: 4698 hep-th/0403132

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Padmanabhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, T.R., Padmanabhan, T. Concept of temperature in multi-horizon spacetimes: analysis of Schwarzschild–De Sitter metric. Gen Relativ Gravit 39, 1789–1811 (2007). https://doi.org/10.1007/s10714-007-0489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0489-0

Keywords

Navigation