Skip to main content
Log in

Non-Asymptotic Guarantees for Sampling by Stochastic Gradient Descent

  • Probability Theory and Mathematical Statistics
  • Published:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) Aims and scope Submit manuscript

Abstract

Sampling from various kinds of distributions is an issue of paramount importance in statistics since it is often the key ingredient for constructing estimators, test procedures or confidence intervals. In many situations, the exact sampling from a given distribution is impossible or computationally expensive and, therefore, one needs to resort to approximate sampling strategies. However, it is only very recently that a mathematical theory providing non-asymptotic guarantees for approximate sampling problem in the high-dimensional settings started to be developed. In this paper we introduce a new mathematical framework that helps to analyze the Stochastic Gradient Descent as a method of sampling, closely related to Langevin Monte-Carlo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bakry, P. Cattiaux, and A. Guillin, “Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincare”, Journal of Functional Analysis, 254 (3), 727–759, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large–scale machine learning”, SIAM Review, 60 (2), 223–311, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. Brosse et al. “Sampling from a log–concave distribution with compact support with proximal Langevin Monte Carlo”, Proceedings of Machine Learning Research, 65, 319–342, 2017.

    Google Scholar 

  4. N. S. Chatterji et al. “On the Theory of Variance Reduction for Stochastic GradientMonte Carlo”, In: arXiv preprint arXiv:1802.05431, 2018.

    Google Scholar 

  5. A. S. Dalalyan, “Theoretical guarantees for approximate sampling from smooth and log–concave densities”, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79 (3), 651–676, 2017.

    Article  MathSciNet  Google Scholar 

  6. A. S. Dalalyan, A. G. Karagulyan, “User–friendly guarantees for the Langevin Monte Carlo with inaccurate gradient”, arXiv preprint arXiv:1710.00095, 2017.

    Google Scholar 

  7. A. Defazio, F. R. Bach, and S. Lacoste–Julien, “SAGA: A Fast Incremental GradientMethodWith Support for Non–Strongly Convex Composite Objectives”, CoRR abs/1407.0202, arXiv: 1407.0202, 2014.

    Google Scholar 

  8. A. Durmus and E. Moulines, “High–dimensional Bayesian inference via the Unadjusted Langevin Algorithm”, arXiv preprint arXiv:1605.01559, 2016.

    Google Scholar 

  9. A. Durmus and E. Moulines et al., “Nonasymptotic convergence analysis for the unadjusted Langevin algorithm”, The Annals of Applied Probability, 27 (3), 1551–1587, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. B. Gelfand and S. K. Mitter, “Recursive stochastic algorithms for global optimization in Rd”, SIAM Journal on Control and Optimization, 29 (5), 999–1018, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. F. Jarner and E. Hansen, “Geometric ergodicity ofMetropolis algorithms”, Stochastic Process. Appl., 85 (2), 341–361, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. S. Pillai, A. M. Stuart, and A. H. Thiery, “Optimal scaling and diffusion limits for the Langevin algorithm in high dimensions”, Ann. Appl. Probab., 22 (6), 2320–2356, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. O. Roberts and J. S. Rosenthal, “Optimal scaling of discrete approximations to Langevin diffusions”, J. R. Stat. Soc. Ser. B, Stat. Methodol., 60 (1), 255–268, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. O. Roberts and O. Stramer, “Langevin diffusions and Metropolis–Hastings algorithms”, Methodol. Comput. Appl. Probab., 4 (4), 337–357, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. O. Roberts, R. L. Tweedie et al, “Exponential convergence of Langevin distributions and their discrete approximations”, Bernoulli, 2 (4), 341–363, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  16. O. Stramer and R. L. Tweedie, “Langevin–type models. I. Diffusions with given stationary distributions and their discretizations”, Methodol. Comput. Appl. Probab., 1 (3), 283–306, 1999.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Karagulyan.

Additional information

Russian Text © A. G. Karagulyan, 2019, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Matematika, 2019, No. 2, pp. 43–53.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karagulyan, A.G. Non-Asymptotic Guarantees for Sampling by Stochastic Gradient Descent. J. Contemp. Mathemat. Anal. 54, 71–78 (2019). https://doi.org/10.3103/S1068362319020031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362319020031

Keywords

MSC2010 numbers

Navigation