Skip to main content
Log in

The Problem of Nonlinear Cantilever Bending in Elementary Functions

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

An analytical solution of the nonlinear problem of cantilever bending by a vertical force is presented, presented in elementary functions with calculation formulas for direct determination of the main parameters of a bent cantilever depending on the given value of the force load (module), such as coordinates of the cantilever outline, bending angles and curvature along the length of the cantilever, moments of forces and internal bending energy, as well as simplified formulas for finding the coordinates of the free end of the cantilever. Comparison of the obtained calculated values with graphical and tabular data of known numerical (exact) solutions gave a fairly high convergence of results (<1–2%), calculation examples are given. The obtained results can also be used to determine (inversely) the rigidity of the cantilever rods of arbitrary cross section, or the elastic modulus of the cantilever material at known sections, including when designing protective structures against dangerous slope geophysical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. P. Popov, Theory and Calculation of Flexible Elastic Rods (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  2. Y. V. Zakharov and K.G. Okhotkin, “Nonlinear bending of thin elastic rods,” J. Appl. Mech. Tech. Phys. 43, 739–744 (2002). https://doi.org/10.1023/A:1019800205519

    Article  MATH  ADS  Google Scholar 

  3. Yu. V. Zakharov and A. A. Zakharenko, “Dynamic instability in the nonlinear problem of a cantilever,” Vychisl. Tekhnol. 4 (1), 48–54 (1999).

    MATH  Google Scholar 

  4. K. N. Anakhaev, “A contribution to calculation of the mathematical pendulum,” Dokl. Phys. 59, 528–533 (2014). https://doi.org/10.1134/S1028335814110081

    Article  MathSciNet  ADS  Google Scholar 

  5. L. Miln-Tomson, “Elliptic integrals,” in Handbook on Special Functions, Ed. by M. Abramowitz and I. A. Stegun (Nauka, Moscow, 1977), pp. 401–441.

    Google Scholar 

  6. L. Miln-Tomson, “Elliptic Jacobi functions and theta functions,” in Handbook on Special Functions, Ed. by M. Abramowitz and I. A. Stegun (Nauka, Moscow, 1977), pp. 380–400.

    Google Scholar 

  7. K. N. Anakhaev, “On the improvement of hydromechanical methods for calculating potential (filtration) flows,” in Engineering Systems - 2009 (RUDN, Moscow, 2009), Vol. 2, pp. 588–595.

    Google Scholar 

  8. K. N. Anakhaev, “On definition of Jacobi elliptic functions,” Vestn. RUDN, Ser. Mat. Inform. Fiz., No. 2, 90–95 (2009).

  9. K. N. Anakhaev, “Complete elliptic integrals of the third kind in problems of mechanics,” Dokl. Phys. 62, 133–135 (2017). https://doi.org/10.1134/S1028335817030053

    Article  ADS  Google Scholar 

  10. K. N. Anakhaev, “Elliptic integrals in nonlinear problems of mechanics,” Dokl. Phys. 65, 142–146 (2020). https://doi.org/10.1134/S1028335820040011

    Article  ADS  Google Scholar 

  11. Ya. M. Parkhomovskii, “Approximate formulas for elliptic integrals and examples of their application to two problems of nonlinear statics of elastic beams,” Uch. Zap. TsAGI 9 (4), 75–86 (1978).

    MathSciNet  Google Scholar 

  12. N. S. Astapov, “Approximate formulas for deflection of compressed flexible bars,” J. Appl. Mech. Tech. Phys. 37, 573–576 (1996). https://doi.org/10.1007/BF02369735

    Article  MATH  ADS  Google Scholar 

  13. A. V. Anfilof’ev, “Mid–span deflection and end–shortening of a rod after buckling,” J. Appl. Mech. Tech. Phys. 42, 352–357 (2001). https://doi.org/10.1023/A:1018852625202

    Article  MATH  ADS  Google Scholar 

  14. D. M. Zuev, “Sagging deflection of cantiliever loaded with a transversal load. Approximate formulas for modification of linear theory,” Akt. Probl. Aviats. Kosmonavt. 1 (14), 294–296 (2018).

    Google Scholar 

  15. D. M. Zuev and K. G. Okhotkin, “Modified formulas for maximum deflection of a cantilever under transverse loading,” Kosm. App. Tekhnol. 4 (1), 28–35 (2020). https://doi.org/10.26732/j.st.2020.1.04

    Article  Google Scholar 

  16. Y. V. Zakharov, K. G. Okhotkin, and A. Y. Vlasov, “Approximate formulas for sagging deflection of an elastic rod under transverse loading,” J. Appl. Mech. Tech. Phys. 43, 745–747 (2002). https://doi.org/10.1023/A:1019852222357

    Article  MATH  ADS  Google Scholar 

  17. K. N. Anakhaev, “Calculation of potential flows,” Dokl. Phys. 50, 154–157 (2005). https://doi.org/10.1134/1.1897992

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Anakhaev.

Additional information

Translated by I. K. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anakhaev, K.N. The Problem of Nonlinear Cantilever Bending in Elementary Functions. Mech. Solids 57, 997–1005 (2022). https://doi.org/10.3103/S0025654422050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422050028

Keywords:

Navigation