Skip to main content
Log in

A time-space Hausdorff derivative model for anomalous transport in porous media

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Allwright, A. Atangana, Fractal advection-dispersion equation for groundwater transport in fractured aquifers with self-similarities. Eur. Phys. J. Plus 133 (2018), 1–20; DOI:10.1140/epjp/i2018-11885-3.

    Google Scholar 

  2. A. Balankin, J. Bory-Reyes, M. Shapiro, Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric. Physica A 444 (2016), 345–359; DOI:10.1016/j.physa.2015.10.035.

    MathSciNet  MATH  Google Scholar 

  3. A. Balankin, B. Elizarraraz, Hydrodynamics of fractal continuum flow. Phys. Rev. E 85 (2012), ID 025302; DOI:10.1103/physreve.85.025302.

    Google Scholar 

  4. D. Baleanu, A. Fernandez, On fractional operators and their classifications. Math. 7 (2019), ID 830; DOI:10.339/math7090830.

    Google Scholar 

  5. D. Barry, G. Sposito, Analytical solution of a convection-dispersion model with time-dependent transport coefficients. Water Resour. Res. 25 (2010), 2407–2416; DOI:10.1029/wr025i012p02407.

    Google Scholar 

  6. B. Bijeljic, P. Mostaghimi, M. Blunt, Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107 (2011), ID 204502; DOI:10.1103/physrevlett.107.204502.

    Google Scholar 

  7. W. Cai, W. Chen, F. Wang, Three-dimensional Hausdorff derivative diffusion model for isotropic/anisotropic fractal porous media. Therm. Sci. 22 (2018), S1–S6; DOI:10.2298/TSCI170630265C.

    Google Scholar 

  8. W. Cai, W. Chen, W. Xu, Characterizing the creep of viscoelastic materials by fractal derivative models. Int. J. Non-Linear Mech. 87 (2016), 58–63; DOI:10.1016/j.ijnonlinmec.2016.10.001.

    Google Scholar 

  9. C. Chang, H. Yeh, Investigation of flow and solute transport at the field scale through heterogeneous deformable porous media. J. Hydrol. 540 (2016), 142–147; DOI:10.1016/j.jhydrol.2016.05.060.

    Google Scholar 

  10. W. Chen, Time-space fabric underlying anomalous diffusion. Chaos Soliton. Fract. 28 (2006), 923–929; DOI:10.1016/j.chaos.2005.08.199.

    MATH  Google Scholar 

  11. Y. Liang, X. Wei, W. Chen, J. Weberszpil, From fractal to a generalized fractal: non-power-function structal metric. Fract. 27 (2019), ID 1950083; DOI:10.1142/S0218348X1950083X.

    MathSciNet  MATH  Google Scholar 

  12. W. Chen, Y. Liang, X. Hei, Structural derivative based on inverse Mittag-Leffler function for modeling ultraslow diffusion. Fract. Calc. Appl. Anal. 19, No 5 (2016), 1250–1261; DOI:10.1515/fca-2016-0064; https://www.degruyter.com/view/j/fca.2016.19.issue-5/issue-files/fca.2016.19.issue-5.xml

    MathSciNet  MATH  Google Scholar 

  13. W. Chen, H. Sun, X. Zhang, D. Korosak, Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59 (2010), 1754–1758; DOI:10.1016/j.camwa.2009.08.020.

    MathSciNet  MATH  Google Scholar 

  14. W. Chen, F. Wang, B. Zheng, W. Cai, Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations. Eng. Anal. Bound. Elem. 84 (2017), 213–219; DOI:10.1016/j.enganabound.2017.09.003.

    MathSciNet  MATH  Google Scholar 

  15. J. Crank, The Mathematics of Diffusion. 2nd Clarendon, Oxford (1975).

    MATH  Google Scholar 

  16. A. Daus, E. Frind, E. Sudicky, Comparative error analysis in finite element formulations of the advection-dispersion equation. Adv. Water Resour. 8 (1985), 86–95; DOI:10.1016/0309-1708(85)90005-3.

    Google Scholar 

  17. M. Dentz, A. Cortis, H. Scher, B. Berkowitz, Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27 (2004), 155–173; DOI:10.1016/j.advwatres.2003.11.002.

    Google Scholar 

  18. M. Dentz, P. Kang, T. Borgne, Continuous time random walks for non-local radial solute transport. Adv. Water Resour. 82 (2015), 16–26; DOI:10.1016/j.advwatres.2015.04.005.

    Google Scholar 

  19. P. Estevez, M. Orchard, M. Cortes, A fractal time thermal model for predicting the surface temperature of air-cooled cylindrical Li-ion cells based on experimental measurements. J. Power Sources 306 (2016), 636–645; DOI:10.1016/j.jpowsour.2015.12.037.

    Google Scholar 

  20. G. Gao, H. Zhan, S. Feng, B. Fu, Y. Ma, G. Huang, A new mobile-immobile model for reactive solute transport with scale-dependent dispersion. Water Resour. Res. 46 (2010), ID W08533; DOI:10.1029/2009WR008707.

    Google Scholar 

  21. J. He, A tutorial review on fractal spacetime and fractional calculus. Int. J. Theor. Phys. 53 (2014), 3698–3718; DOI:10.1007/s10773-014-2123-8.

    MathSciNet  MATH  Google Scholar 

  22. R. Hilfer, Y. Luchko, Desiderata for fractional derivatives and integrals. Math. 7, No 2 (2019), ID 149; DOI:10.3390/math7020149.

    Google Scholar 

  23. W. Jost, (1960), Diffusion in Solids. 3rd Academic Press, New York (1960)

    Google Scholar 

  24. S. Lee, I. Yeo, K. Lee, W. Lee, The role of eddies in solute transport and recovery in rock fractures: Implication for groundwater remediation. Hydrol. Process. 31 (2017), 3580–3587; DOI:10.1002/hyp.11283.

    Google Scholar 

  25. S. Lehnigk, The Generalized Feller Equation and Related Topics. Longman Sci. Tech., Harlow (1993)

    MATH  Google Scholar 

  26. J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and fractional wave equations. P. Math. Phys. Eng. Sci. 465 (2009), 2521–2536; DOI:10.1098/rspa.2009.0101.

    MathSciNet  MATH  Google Scholar 

  27. Y. Liang, A. Ye, W. Chen, R. Gatto, L. Colon-Perez, T. Mareci, L. Magin, A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging. Commun. Nonlinear Sci. 39 (2016), 529–537; DOI:10.1016/j.cnsns.2016.04.006.

    MathSciNet  MATH  Google Scholar 

  28. Y. Liang, W. Chen, A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids. Commun. Nonlinear Sci. 56 (2018), 131–137; DOI:10.1016/j.cnsns.2017.07.027.

    MathSciNet  MATH  Google Scholar 

  29. G. Lin, Analyzing signal attenuation in PFG anomalous diffusion via a modified Gaussian phase distribution approximation based on fractal derivative model. Physica A 467 (2017), 277–288; DOI:10.1016/j.physa.2016.10.036.

    MathSciNet  MATH  Google Scholar 

  30. X. Liu, H. Sun, M. Lazarevic, Z. Fu, A variable-order fractal derivative model for anomalous diffusion. Therm. Sci. 21 (2017), 51–59; DOI:10.2298/TSCI160415244L.

    Google Scholar 

  31. R. Metzler, J. Klafter, The random walk��s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77; DOI:10.1016/s0370-15730000070-3.

    MathSciNet  MATH  Google Scholar 

  32. S. Mishra, J. Parker, Analysis of solute transport with a hyperbolic scale-dependent dispersion model. Hydrol. Process. 4 (2010), 45–57; DOI:10.1002/hyp.3360040105.

    Google Scholar 

  33. M. Moslehi, F. Barros, F. Ebrahimi, M. Sahimi, Upscaling of solute transport in disordered porous media by wavelet transformations. Adv. Water Resour. 96 (2016), 180–189; DOI:10.1016/j.advwatres.2016.07.013.

    Google Scholar 

  34. R. Muralidhar, D. Ramkrishna, Diffusion in pore fractals: A review of linear response models. Transport Porous Med. 13 (1993), 79–95; DOI:10.1007/BF00613271.

    Google Scholar 

  35. S. Nie, H. Sun, X. Liu, Z. Wang, M. Xie, Fractal derivative model for the transport of the suspended sediment in unsteady flows. Therm. Sci. 22 (2018), S109–S115; DOI:10.2298/TSCI170717276N.

    Google Scholar 

  36. M. Ortigueira, J. Machado, What is a fractional derivative?. J. Comput. Phys. 293 (2015), 4–13; DOI:10.1016/j.jcp.2014.07.019.

    MathSciNet  MATH  Google Scholar 

  37. L. Pang, B. Hunt, Solutions and verification of a scale-dependent dispersion model. J. Contam. Hydrol. 53 (2001), 21–39; DOI:10.1016/s0169-7722(01)00134-6.

    Google Scholar 

  38. D. Pedretti, A. Molinari, C. Fallico, S. Guzzi, Implications of the change in confinement status of a heterogeneous aquifer for scale-dependent dispersion and mass-transfer processes. J. Contam. Hydrol. 193 (2016), 86–95; DOI:10.1016/j.jconhyd.2016.09.005.

    Google Scholar 

  39. J. Reyes-Marambio, F. Moser, F. Gana, B. Severino, W. Calderon-Munoz, R. Palma-Behnke, M. Sabahi, H. Montazeri, B. Sleep, Practical finite analytic methods for simulation of solute transport with scale-dependent dispersion under advection-dominated conditions. Int. J. Heat Mass Tran. 83 (2015), 799–808; DOI:10.1016/j.ijheatmasstransfer.2014.11.078.

    Google Scholar 

  40. M. Shlesinger, Fractal time in condensed matter. Annu. Rev. Phys. Chem. 39 (1988), 269–290; DOI:10.1146/annurev.pc.39.100188.001413.

    Google Scholar 

  41. N. Su, G. Sander, F. Liu, V. Anh, D. Barry, Similarity solutions for solute transport in fractal porous media using a time- and scale-dependent dispersivity. Appl. Math. Model. 29 (2005), 852–870; DOI:10.1016/j.apm.2004.11.006.

    MATH  Google Scholar 

  42. N. Su, Mass-time and space-time fractional partial differential equations of water movement in soils: theoretical framework and application to infiltration. J. Hydrol. 519 (2014), 1792–1803; DOI:10.1016/j.jhydrol.2014.09.021.

    Google Scholar 

  43. X. Su, W. Chen, W. Xu, Characterizing the rheological behaviors of non-Newtonian fluid via a viscoelastic component: Fractal dashpot. Adv. Mech. Eng. 9 (2017), 1–12; DOI:10.1177/1687814017699765.

    Google Scholar 

  44. H. Sun, Z. Li, Y. Zhang, W. Chen, Fractional and fractal derivative models for transient anomalous diffusion: Model comparison. Chaos Soliton. Fract. 102 (2017), 346–353; DOI:10.1016/j.chaos.2017.03.060.

    MathSciNet  Google Scholar 

  45. H. Sun, M. Meerschaert, Y. Zhang, J. Zhu, W. Chen, A fractal Richard’s equation to capture the non-Boltzmann scaling of water transport in unsaturated media. Adv. Water Resour. 52 (2013), 292–295; DOI:10.1016/j.advwatres.2012.11.005.

    Google Scholar 

  46. H. Sun, Y. Zhang, W. Chen, D. Reeves, Use of a variable index fractional derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157 (2014), 47–58; DOI:10.1016/j.jconhyd.2013.11.002.

    Google Scholar 

  47. G. Uffink, A. Elfeki, M. Dekking, J. Bruining, C. Kraaikamp, Understanding the non-Gaussian nature of linear reactive solute transport in 1D and 2D. Transport Porous Med. 91 (2012), 547–571; DOI:10.1007/s11242-011-9859-x.

    Google Scholar 

  48. S. Wheatcraft, S. Tyler, An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res. 24 (1988), 566–578; DOI:10.1029/WR024i004p00566.

    Google Scholar 

  49. B. Yu, X. Jiang, H. Xu, A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation. Numer. Algorithms 68 (2015), 923–950; DOI:10.1007/s11075-014-9877-1.

    MathSciNet  MATH  Google Scholar 

  50. H. Zhang, X. Jiang, X. Yang, A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem. Appl. Math. Comput. 320 (2018), 302–318; DOI:10.1137/140980545.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Liang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Su, N. & Chen, W. A time-space Hausdorff derivative model for anomalous transport in porous media. FCAA 22, 1517–1536 (2019). https://doi.org/10.1515/fca-2019-0079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0079

Navigation