Skip to main content
Log in

Fractional Calculus in Image Processing: A Review

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Over the last decade, it has been demonstrated that many systems in science and engineering can be modeled more accurately by fractional-order than integer-order derivatives, and many methods are developed to solve the problem of fractional systems. Due to the extra free parameter order a, fractional-order based methods provide additional degree of freedom in optimization performance. Not surprisingly, many fractional-order based methods have been used in image processing field. Herein recent studies are reviewed in ten sub-fields, which include image enhancement, image denoising, image edge detection, image segmentation, image registration, image recognition, image fusion, image encryption, image compression and image restoration. In sum, it is well proved that as a fundamental mathematic tool, fractional-order derivative shows great success in image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ahmad, U. Shamsi, I.R. Khan, An enhanced image encryption algorithm using fractional chaotic systems. Procedia Computer Science 57 (2015), 852–859.

    Google Scholar 

  2. S.E. Azoug, S. Bouguezel, A non-linear preprocessing for opto-digital image encryption using multiple-parameter discrete fractional Fourier transform. Optics Communications 359, No 1 (2016), 85–94.

    Google Scholar 

  3. J. Bai, X.C. Feng, Fractional-order total variation image denoising based on proximity algorithm. IEEE Trans. on Image Processing 16, No 10 (2007), 2492–2502.

    MathSciNet  Google Scholar 

  4. L.C. Brito, K. Chen, Multigrid algorithm for high order denoising. SIAM J. on Imaging Sciences 3, No 3 (2010), 363–389.

    MathSciNet  MATH  Google Scholar 

  5. R.H. Chan, K. Chen, A multilevel algorithm for simultaneously denoising, deblurring images. SIAM J. on Scientific Computing 32, No 2 (2010), 1043–1063.

    MathSciNet  MATH  Google Scholar 

  6. T.F. Chan, K. Chen, An optimization-based multilevel algorithm for total variation image denoising. Multiscale Modeling, Simulation 5, No 2 (2006), 615–645.

    MathSciNet  MATH  Google Scholar 

  7. J. Che, Q. Guan, X.Y. Wang, Image denoising based on adaptive fractional partial differential equations. In Proc. of 6th Internat. Congress on Image, Signal Processing (CISP) Hangzhou, (2013), 288–292.

    Google Scholar 

  8. J. Che, Y.S. Shi, Y. Xiang, Y.T. Ma, The fractional differential enhancement of image texture features, its parallel processing optimization. In: Proc. of 5th Internat. Congress on Image, Signal Processing (CISP) Chongqing, (2012), 330–333.

    Google Scholar 

  9. D.L. Chen, Q.Y. Chen, D.Y. Xue, Fractional-order total variation image denoising based on proximity algorithm. Applied Mathematics, Computation 257, No C (2015), 537–545.

    MathSciNet  MATH  Google Scholar 

  10. D.L. Chen, Y.C. Chen, D.Y. Xue, 1-D, 2-D digital fractional-order Savitzky–Golay differentiator. Signal, Image, Video Processing 6, No 3 (2012), 503–511.

    Google Scholar 

  11. D.L. Chen, S.S. Sun, C.R. Zhang, Y.Q. Chen, D.Y. Xue, Fractional-order TV-L2 model for image denoising. Central European J. of Physics 11, No 10 (2013), 1414–1422.

    Google Scholar 

  12. D.L. Chen, D.Y. Xue, Y.Q. Chen, Fractional differentiation-based approach for robust image edge detection. In: Proc. of Conference on Fractional Derivative and Applications (2012), 322–327.

    Google Scholar 

  13. G. Chen, J.S. Zhang, D.F. Li, Fractional-order total variation combined with sparsifying transforms for compressive sensing sparse image reconstruction. J. of Visual Communication and Image Representation 38, No C (2016), 407–422.

    Google Scholar 

  14. G. Chen, J.S. Zhang, D.F. Li, H.X. Chen, Robust Kronecker product video denoising based on fractional-order total variation model. Signal Processing 119, No C (2016), 1–20.

    Google Scholar 

  15. K. Chen, E.L. Piccolomini, F. Zama, An automatic regularization parameter selection algorithm in the total variation model for image de-blurring. Numerical Algorithms 67, No 1 (2014), 73–92.

    MathSciNet  MATH  Google Scholar 

  16. X. Chen, W. Li, Z.L. Liu, Z.H. Zhou, Fractional low-order independent component analysis for face recognition robust to partial occlusion. In: Proc. of Internat. Symp. on Biometrics and Security Technologies (ISBAST) Kuala Lumpur, (2014), 1–5.

    Google Scholar 

  17. Y.Q. Chen, K.L. Moore, Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications 49, No 3 (2002), 363–367.

    MathSciNet  MATH  Google Scholar 

  18. D.L. Cui, L. Shu, Y.F. Chen, X.L. Wu, Image encryption using block based transformation with fractional Fourier transform. In: Proc. of 8th Internat. ICST Conf. on Communications and Networking in China (CHINACOM) Guilin, (2013), 552–556.

    Google Scholar 

  19. F.F. Dong, A variational framework for image denoising based on fractional-order derivatives. In: Proc. of 9th Internat. Conf. on Natural Computation (ICNC) Shenyang, (2013), 1283–1288.

    Google Scholar 

  20. H.M. Elhoseny, O.S. Faragallah, H.E.H Ahmed, H.B. Kazemian, H.S. El-Sayed, F.E.A. El-Samie, The effect of fractional Fourier transform angle in encryption quality for digital images. Optik-Internat. J. for Light and Electron Optics 127, No 1 (2016), 315–319.

    Google Scholar 

  21. M.F. Erden, M.A. Kutay, H.M. Ozaktas, Repeated filtering in consecutive fractional Fourier domains and its application to signal restoration. IEEE Trans. on Signal Processing 47, No 5 (1999), 1458–1462.

    Google Scholar 

  22. C.B. Gao, J.L. Zhou, W.H. Zhang, Edge detection based on the newton interpolation’s fractional differentiation. Int. Arab J. Inf. Technol 11, No 3 (2014), 223–228.

    Google Scholar 

  23. C.B. Gao, J.L. Zhou, J.R. Hu, F.N. Lang, Edge detection of colour image based on quaternion fractional differential. IET Image Processing 5, No 3 (2011), 261–272.

    MathSciNet  Google Scholar 

  24. C.C. Garvey, N.D. Cahill, A. Melbourne, C. Tanner, S. Ourselin, D.J. Hawkes, Nonrigid image registration with two-sided space-fractional partial differential equations. In: Proc. of 20th Internat. Conf. on Image Processing (ICIP) Melbourne, VIC, (2013), 747–751.

    Google Scholar 

  25. P. Ghamisi, M.S. Couceiro, F.M. Martins, B.J. Atli, Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Trans. on Geoscience and Remote Sensing 52, No 5 (2014), 2382–2394.

    Google Scholar 

  26. J. Gilles, Y. Meyer, Properties of BV- G Structures+ Textures decomposition models. Application to road detection in satellite images. IEEE Trans. on Image Processing 19, No 11 (2010), 2793–2800.

    MathSciNet  MATH  Google Scholar 

  27. N. He, J.B. Wang, L.L. Zhang, K. Lu, An improved fractional-order differentiation model for image denoising. Signal Processing 112 (2015), 180–188.

    Google Scholar 

  28. S. Hoefer, F. Heil, M. Pandit, R. Kumaresan, Segmentation of textures with different roughness using the model of isotropic two-dimensional fractional Brownian motion. In: Proc. of Internat. Conf. on Acoustics, Speech, and Signal Processing Minneapolis, MN, USA, (1993), 53–56.

    Google Scholar 

  29. X.G. Hu, Y. Li, A new variational model for image denoising based on fractional-order derivative. In: Proc. of Internat. Conf. on Systems and Informatics (ICSAI2012) (2012), 1820–1824.

    Google Scholar 

  30. F.Y. Hu, S.H. Si, W. San, Hau, B.C. Fu, M.X. Si, H. Luo, Image denoising and enhancement based on adaptive fractional calculus of small probability strategy. Neurocomputing 158 (2015), 295–306.

    Google Scholar 

  31. R. Iwai, H. Yoshimura, Security of registration data of fingerprint image with a server by use of the fractional Fourier transform. In: Proc. of 9th Internat. Conf. on Signal Processing Beijing, (2008), 2070–2073.

    Google Scholar 

  32. H.A. Jalab, R.W. Ibrahim, An improved fractional-order differentiation model for image denoising. Signal Processing 107 (2015), 340–354.

    Google Scholar 

  33. A.P. Jiang, L. Liu, Forest fire image segmentation based on contourlet transform and fractional Brownian motion. In: Proc. of Internat. Workshop on Chaos-Fractals Theories and Applications (IWCFTA) Kunming, Yunnan, (2010), 425–429.

    Google Scholar 

  34. Jonathan, Fractional Derivative. [Online] (MatlabCentral) at: http://www.mathworks.com/matlabcentral/fileexchange/45982 (2014)

    Google Scholar 

  35. D. Kumar, N.K. Nishchal, Three-dimensional object recognition using joint fractional Fourier transform correlators with the help of digital Fresnel holography. Optik-Internat. J. for Light and Electron Optics 126, No 20 (2015), 2690–2695.

    Google Scholar 

  36. M. Kumar, R. Rewani, Digital Image Watermarking using Fractional Fourier transform via image compression. In: Proc. of Internat. Conf. on Computational Intelligence and Computing Research (IC-CIC) Enathi, (2013), 1–4.

    Google Scholar 

  37. P. Kumar, S. Kumar, B. Raman, A fractional order variational model for the robust estimation of optical flow from image sequences. OptikInternat. J. for Light and Electron Optics 127, No 20 (2016), 8710–8727.

    Google Scholar 

  38. P.V. Kumari, K. Thanushkodi, A secure fast 2D-Discrete fractional Fourier transform based medical image compression using hybrid encoding technique. In: Proc. of Internat. Conf. on Current Trends in Engineering and Technology (ICCTET) Coimbatore, (2013), 1–7.

    Google Scholar 

  39. M.A. Kutay, H.M. Ozaktas, Optimal image restoration with the fractional Fourier transform. J. of the Optical Soc. of America A 15, No 15 (1998), 825–833.

    Google Scholar 

  40. J. Lang, Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain. Optics Communications 338 (2015), 181–192.

    Google Scholar 

  41. J. Lang, Z.C. Hao, Novel image fusion method based on adaptive pulse coupled neural network and discrete multi-parameter fractional random transform. Optics and Lasers in Engineering 52 (2014), 91–98.

    Google Scholar 

  42. J. Lang, Z.C. Hao, Image fusion method based on adaptive pulse coupled neural network in the discrete fractional random transform domain. Optik-Internat. J. for Light and Electron Optics 126, No 23 (2015), 3644–3651.

    Google Scholar 

  43. J. Lang, R. Tao, Y. Wang, Image encryption based on the multiple-parameter discrete fractional Fourier transform and chaos function. Optics Communications 283, No 10 (2010), 2092–2096.

    Google Scholar 

  44. B. Li, W. Xie, Adaptive fractional differential approach and its application to medical image enhancement. Computers and Electrical Engineering 45 (2012), 324–335.

    Google Scholar 

  45. B. Li, W. Xie, Image denoising and enhancement based on adaptive fractional calculus of small probability strategy. Neurocomputing 175 (2016), 704–714.

    Google Scholar 

  46. H.F. Li, Z.T. Yu, C.L. Mao, Fractional differential and variational method for image fusion and super-resolution. Neurocomputing 171, C (2016), 138–148.

    Google Scholar 

  47. J.B. Li, Gabor filter based optical image recognition using Fractional Power Polynomial model based common discriminant locality preserving projection with kernels. Optics and Lasers in Engineering 50, No 9 (2012), 1281–1286.

    Google Scholar 

  48. X.M. Li, Image enhancement in the fractional Fourier domain. In: Proc. of 6th Internat. Congress on Image and Signal Processing (CISP) Hangzhou, (2013), 299–303.

    Google Scholar 

  49. X.W. Li, I. Lee, Modified computational integral imaging-based double image encryption using fractional Fourier transform. Optics and Lasers in Engineering 66 (2015), 112–121.

    Google Scholar 

  50. Y.B. Li, F. Zhang, Y.C. Li, R. Tao, Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform. Optics and Lasers in Engineering 72 (2015), 18–25.

    Google Scholar 

  51. Z.H. Li, J.W. Yang, R.S. Lan, X.X. Feng, Multilayer-pseudopolar fractional Fourier transform approach for image registration. In: Proc. of 8th Internat. Conf. on Computational Intelligence and Security (2012), 323–327.

    Google Scholar 

  52. J.B. Lima, L.F.G Novaes, Image encryption based on the fractional Fourier transform over finite fields. Signal Processing 94 (2014), 521–530.

    Google Scholar 

  53. P.L. Lin, P.W. Huang, P.Y. Huang, H.C. Hsu, Adaptive active contour model driven by fractional order fitting energy. Computer Methods and Programs in Biomedicine 121, No 3 (2015), 117–126.

    Google Scholar 

  54. R.L. Magin, Fractional Calculus in Bioengineering. Begell House Redding, (2006)

    Google Scholar 

  55. R.L. Magin, O. Abdullah, D. Baleanu, J.X. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch–Torrey equation. J. of Magnetic Resonance 190, No 2 (2008), 255–270.

    Google Scholar 

  56. R.L. Magin, X. Feng, D. Baleanu, Fractional calculus in NMR. IFAC Proc. Volumes 41, No 2 (2008), 9613–9618.

    Google Scholar 

  57. R.L. Magin, M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus. J. of Vibration and Control 14, No 9–10 (2008), 1431–1442.

    MATH  Google Scholar 

  58. B. Mathieu, P. Melchior, A. Oustaloup, C. Ceyral, Fractional differentiation for edge detection. Signal Processing 83, No 11 (2003), 2421–2432.

    MATH  Google Scholar 

  59. A. Melbourne, N. Cahill, C. Tanner, M. Modat, D.J. Hawkes, S. Ourselin, Using fractional gradient information in non-rigid image registration: application to breast MRI. In: Proc. of Conf. on SPIE Medical Imaging San Diego, California, USA, (2012), 83141Z–83141Z.

    Google Scholar 

  60. H.X. Niu, E.Q. Chen, L. Qi, X. Guo, Image registration based on fractional Fourier transform. Optik-Internat. J. for Light and Electron Optics 126, No 23 (2015), 3889–3893.

    Google Scholar 

  61. A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. on Circuits and Systems I: Fundamental Theory and Appl 47, No 1 (2000), 25–39.

    Google Scholar 

  62. K. Paek, M. Yao, X.W. Xue, A retina-filtering model and its application in image restoration. In: Proc. of 9th Internat. Conf. on Natural Computation (ICNC) Coimbatore, (2013), 322–327.

    Google Scholar 

  63. W. Pan, K.H. Qin, Y. Chen, An adaptable-multilayer fractional Fourier transform approach for image registration. IEEE Trans. on Pattern Analysis and Machine Intelligence 31, No 3 (2009), 400–414.

    Google Scholar 

  64. X. Pan, Y.Q. Ye, J.H. Wang, X.D. Gao, A novel fractional-order signal processing based edge detection method. In: Proc. of 6th Internat. Congress on Image and Signal Processing (CISP) Hangzhou, (2013), 309–314.

    Google Scholar 

  65. S. Pei, W.L. Hsue, The multiple-parameter discrete fractional Fourier transform. Signal Processing Letters 13, No 6 (2006), 329–332.

    Google Scholar 

  66. I. Petráš, Fractional derivatives, fractional integrals, and fractional differential equations in Matlab. Engineering Education and Research Using MATLAB, InTech, Kap 10 (2011), 239–264.

    Google Scholar 

  67. I. Podlubny, Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal 3, No 4 (2000), 359–386.

    MathSciNet  MATH  Google Scholar 

  68. I. Podlubny, Matrix approach to discretization of ODEs and PDEs of arbitrary real order [Online] (MatlabCentral), at: http://www.mathworks.com/matlabcentral/fileexchange/22071 (2009).

    Google Scholar 

  69. I. Podlubny, A. Chechkin, T. Skovranek, Y.Q. Chen, B.M.V Jara, Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. of Computational Physics 228, No 8 (2009), 3137–3153.

    MathSciNet  MATH  Google Scholar 

  70. Y.F. Pu, Fractional calculus approach to texture of digital image. In: Proc. of 8th Internat. Conf. on Signal Processing (2006)

    Google Scholar 

  71. Y.F. Pu, J.L. Zhou, X. Yuan, Fractional differential mask: A fractional differential-based approach for multiscale texture enhancement. IEEE Trans. on Image Processing 19, No 2 (2010), 491–511.

    MathSciNet  MATH  Google Scholar 

  72. W. Qin, X. Peng, Vulnerability to known-plaintext attack of optical encryption schemes based on two fractional Fourier transform order keys and double random phase keys. J. of Optics A: Pure and Applied Optics 11, No 7 (2009)

    Google Scholar 

  73. Q.W. Ran, L. Yuan, T.Y. Zhao, Image encryption based on nonsepa-rable fractional Fourier transform and chaotic map. Optics Communications 348 (2015), 43–49.

    Google Scholar 

  74. Z. Ren, Adaptive active contour model driven by fractional order fitting energy. Signal Processing 117, C (2015), 138–150.

    Google Scholar 

  75. S. Roy, P. Shivakumara, H.A. Jalab, R.W. Ibrahim, U. Pal, T. Lu, Fractional Poisson enhancement model for text detection and recognition in video frames. Pattern Recognition 52, C (2016), 433–447.

    Google Scholar 

  76. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60, No 1–4 (1992), 259–268.

    MathSciNet  MATH  Google Scholar 

  77. A. Serbes, L. Durak, Optimum signal and image recovery by the method of alternating projections in fractional Fourier domains. Commun. in Nonlinear Sci. and Numer. Simul 15, No 3 (2010), 675–689.

    MathSciNet  MATH  Google Scholar 

  78. K.K. Sharma, S.D. Joshi, Image registration using fractional Fourier transform. In: Proc. of Asia Pacific Conf. on Circuits and Systems Singapore, (2006), 470–473.

    Google Scholar 

  79. K.K. Sharma, M. Sharma, Image fusion based on image decomposition using self-fractional Fourier functions. Signal, Image and Video Processing 8, No 7 (2014), 1335–1344.

    Google Scholar 

  80. J.B. Sharma, K.K. Sharma, V. Sahula, Hybrid image fusion scheme using self-fractional Fourier functions and multivariate empirical mode decomposition. Signal Processing 100, No 7 (2014), 146–159. bibitemshkvarko2016radar Y.V. Shkvarko, J.I. Yañez, J.A. Amao, C.G.D.M. del Campo, Radar/SAR image resolution enhancement via unifying descriptive experiment design regularization and wavelet-domain processing. IEEE Geoscience and Remote Sensing Letters 13, No 2 (2016), 1–5.

    Google Scholar 

  81. M.X. Si, L.G. Fang, F.Y. Hu, S.H. Si, Texture enhancement algorithm based on fractional differential mask of adaptive non-integral step. In: Proc. of 7th Internat. Congress on Image and Signal Processing (CISP) Dalian, (2014), 179–183.

    Google Scholar 

  82. K. Singh, N. Singh, P. Kaur, R. Saxena, Image compression by using fractional transforms. In: Proc. of Internat. Conf. on Advances in Recent Technologies in Communication and Computing Kottayam, Kerala, (2009), 411–413.

    Google Scholar 

  83. C.V. Stewart, B. Moghaddam, K.J. Hintz, L.M. Novak, Fractional Brownian motion models for synthetic aperture radar imagery scene segmentation. Proc. of the IEEE 81, No 10 (1993), 1511–1522.

    Google Scholar 

  84. L.S. Sui, K.K. Duan, J.L. Liang, Double-image encryption based on discrete multiple-parameter fractional angular transform and two-coupled logistic maps. Optics Communications 343 (2015), 140–149.

    Google Scholar 

  85. R. Tao, X.Y. Meng, Y. Wang, Image encryption with multiorders of fractional Fourier transforms. IEEE Transactions on Information Forensics and Security 5, No 4 (2010), 734–738.

    Google Scholar 

  86. H. Tian, P.G. Wang, W. Zheng, A new image fusion algorithm based on fractional wavelet transform. In: Proc. of 2nd Internat. Conf. on Computer Science and Network Technology (ICCSNT) Changchun, (2012), 2175–2178.

    Google Scholar 

  87. D. Tian, J.F. Wu, Y.J. Yang, A fractional-order edge detection operator for medical image structure feature extraction. In: Proc. of 26th Chinese Control and Decision Conference (CCDC) Changsha, (2014), 5173–5176.

    Google Scholar 

  88. D. Tian, D.Y. Xue, D.L. Chen, S.S. Sun, A fractional-order regulatory CV model for brain MR image segmentation. In: Proc. of 25th Chinese Control and Decision Conference (CCDC) Guiyang, (2013), 37–40.

    Google Scholar 

  89. D. Tian, D.Y. Xue, D.H. Wang, A fractional-order adaptive regulariza-tion primal–dual algorithm for image denoising. Information Sciences 296, No 7 (2015), 147–159.

    MathSciNet  MATH  Google Scholar 

  90. P.G. Wang, H. Tian, W. Zheng, A novel image fusion method based on FRFT-NSCT. Mathematical Problems in Engineering 2013 (2013)

  91. X.J. Xu, Y.R. Wang, S. Chen, Medical image fusion using discrete fractional wavelet transform. Biomedical Signal Processing and Control 27 (2016), 103–111.

    Google Scholar 

  92. D.Y. Xue, Control System Computer Aided Design-Matlab Language and Application. Tsinghua University Press, (2006)

    Google Scholar 

  93. P.M. Yan, Y.L. Mo, H. Liu, Image restoration based on the discrete fraction Fourier transform. In: Proc. of Conf. on Multispectral Image Processing and Pattern Recognition (2001), 280–285.

    Google Scholar 

  94. W.T. Yang, Z.M. Feng, W.Z. Liu, X.C. Zou, Blurred defocused image restoration based on FRFT. Wuhan University J. of Natural Sciences 12, No 3 (2007), 496–500.

    Google Scholar 

  95. H.B. Yang, Y.Q. Ye, D.W. Wang, B. Jiang, A novel fractional-order signal processing based edge detection method. In: Proc. of 11th Internat. Conf. on Control Automation Robotics and Vision (2010), 1122–1127.

    Google Scholar 

  96. I.C. Yetik, M.A. Kutay, H.M. Ozaktas, Image representation and compression with the fractional Fourier transform. Optics Communications 197, No 4–6 (2001), 275–278.

    Google Scholar 

  97. F. Yi, Fractional differential analysis for texture of digital image. J. of Algorithms and Computational Technology 1, No 3 (2007), 357–380.

    Google Scholar 

  98. X.H. Yin, S.B. Zhou, M.A. Siddique, Fractional nonlinear anisotropic diffusion with p-Laplace variation method for image restoration. Multimedia Tools and Appl 75, No 8 (2015), 4505–4526.

    Google Scholar 

  99. H. Yoshimura, R. Iwai, New encryption method of 2D image by use of the fractional Fourier transform. In: Proc. of 9th Internat. Conf. on Signal Processing Beijing, (2008), 2182–2184.

    Google Scholar 

  100. J. You, S. Hungnahally, A. Sattar, Fractional discrimination for texture image segmentation. In: Proc. of Internat. Conf. on Image Processing Santa Barbara, CA, (1997), 220–223.

    Google Scholar 

  101. Y.H. Yuan, Q.S. Sun, H.W. Ge, Fractional-order embedding canonical correlation analysis and its applications to multi-view dimensionality reduction and recognition. Pattern Recognition 47, No 3 (2014), 1411–1424.

    MATH  Google Scholar 

  102. I. Zachevsky, Y.Y.J Zeevi, Statistics of natural stochastic textures and their application in image denoising. IEEE Trans. on Image Processing 25, No 5 (2016), 2130–2145.

    MathSciNet  MATH  Google Scholar 

  103. G.M. Zhang, B.B. Chen, Y.Q. Chen, Research on image matching combining on fractional differential with scale invariant feature transform. In: Proc. of Conf. on Internat. Design Engineering Technical and Computers and Information in Engineering Boston, Massachusetts-USA, (2015), 10–15.

    Google Scholar 

  104. J.P. Zhang, K. Chen, Variational image registration by a total fractional-order variation model. J. of Computational Physics 293 (2015), 442–461.

    MathSciNet  MATH  Google Scholar 

  105. J.P. Zhang, K. Chen, A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM J. on Imaging Sciences 8, No 4 (2015), 2487–2518.

    MathSciNet  MATH  Google Scholar 

  106. J.P. Zhang, K. Chen, B. Yu, An iterative Lagrange multiplier method for constrained total-variation-based image denoising. SIAM J. on Numerical Analysis 50, No 3 (2012), 983–1003.

    MathSciNet  MATH  Google Scholar 

  107. J.P. Zhang, K. Chen, B. Yu, D.A. Gould, A local information based variational model for selective image segmentation. Inverse Problems Imaging 1, No 1 (2014), 293–320.

    MathSciNet  MATH  Google Scholar 

  108. X.J. Zhang, Y. Shen, S.Y. Li, H.Y. Zhang, Medical image registration in fractional Fourier transform domain. Optik-Internat. J. for Light and Electron Optics 124, No 12 (2013), 1239–1242.

    Google Scholar 

  109. T.Y. Zhao, Q.W. Ran, L. Yuan, Y.Y. Chi, J. Ma, Security of image encryption scheme based on multi-parameter fractional Fourier transform. Optics Communications 376 (2016), 47–51.

    Google Scholar 

  110. N.R. Zhou, H.L. Li, D. Wang, S.M. Pan, Z.H. Zhou, Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Optics Communications 343 (2015), 10–21.

    Google Scholar 

  111. N.R. Zhou, J.P. Yang, C.F. Tan, S. Pan, Z. Zhou, Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform. Optics Communications 354 (2015), 112–121.

    Google Scholar 

  112. J. Zhang, Z.H. Wei, A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising. Applied Mathematical Modelling 35, No 5 (2011), 2516–2528.

    MathSciNet  MATH  Google Scholar 

  113. W. Zhang, J.J. Li, Y.P. Yang, A fractional diffusion-wave equation with non-local regularization for image denoising. Signal Processing 103, No 10 (2014), 6–15.

    Google Scholar 

  114. W. Zhang, J.J. Li, Y.P. Yang, Spatial fractional telegraph equation for image structure preserving denoising. Signal Processing 107 (2013), 368–377.

    Google Scholar 

  115. T.D. Zhang, L. Wan, Z.B. Qin, L. Yu, A method of underwater image segmentation based on discrete Fractional Brownian Random Field. In: Proc. of 3rd Conf. on Industrial Electronics and Applications Singapore, (2008), 2507–2511.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Yang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Chen, D., Zhao, T. et al. Fractional Calculus in Image Processing: A Review. FCAA 19, 1222–1249 (2016). https://doi.org/10.1515/fca-2016-0063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0063

MSC 2010

Key Words and Phrases

Navigation