Skip to main content
Log in

Controllability of Abstract Systems of Fractional Order

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper we are concerned with the controllability of control systems governed by a fractional differential equation in Banach spaces. Using the properties of the Mittag-Leffler function we generalize to these systems a result of Korobov and Rabakh, which was established for first order systems. We apply our results to study the controllability of a system modeled by a fractional integral equation in a Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Agarwal, A propos d’une note de M. Pierre Humbert. C. R. Séances Acad. Sci. 236, No 21 (1953), 2031–2032.

    MathSciNet  MATH  Google Scholar 

  2. W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems. Birkh¨auser Verlag, Basel (2001).

    Book  Google Scholar 

  3. K. Balachandran, J. Kokila, On the controllability of fractional dynamical systems. Int. J. Appl. Math. Comput. Sci. 22, No 3 (2012), 523–531.

    Article  MathSciNet  Google Scholar 

  4. K. Balachandran, V. Govindaraj, L. Rodríguez-Germá, J.J. Trujillo, Controllability of nonlinear higher order fractional dynamical systems. Nonlinear Dyn. 71 (2013), 605–612.

    Article  MathSciNet  Google Scholar 

  5. K. Balachandran, V. Govindaraj, L. Rodríguez-Germá, J.J. Trujillo, Controllability results for nonlinear fractional-order dynamical systems. J. Optim. Theory Appl. 156 (2013), 33–44.

    Article  MathSciNet  Google Scholar 

  6. M. Bettayeb, S. Djennoune, New results on the controllability and observability of fractional dynamical systems. J. Vibration and Control 14, No 9–10 (2008), 1531–1541.

    Article  MathSciNet  Google Scholar 

  7. M. Bragdi, M. Hazi, Existence and controllability result for an evolution fractional integrodifferential systems. Int. J. Contemp. Math. Sciences 5, No 19 (2010), 901–910.

    MathSciNet  MATH  Google Scholar 

  8. Y.Q. Chen, H.S. Ahn, D. Xue, Robust controllability of interval fractional order linear time invariant systems. Signal Processing 86, No 10 (2006), 2794–2802.

    Article  Google Scholar 

  9. A.A. Chikrii, I.I. Matichin, Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross. J. of Automation and Information Sciences 40, No 6 (2008), 1–11.

    Article  Google Scholar 

  10. R.F. Curtain, A.J. Pritchard, Infinite Dimensional Linear Systems Theory. Springer Verlag, Berlin (1978).

    Book  Google Scholar 

  11. J. Diestel, J.J. Uhl, Vector Measures. Amer. Math. Society, Providence (1972).

    MATH  Google Scholar 

  12. K. Diethelm, A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoelasticity. In: F. Keil, W. Machens, H. Voss, J. Werther (Eds.), Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg (1999), 217–224.

    Google Scholar 

  13. M. Feckan, J-R. Wang, Y. Zhou, Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators. J. Optim. Theory Appl. 156 (2013), 79–95.

    Article  MathSciNet  Google Scholar 

  14. R. Ganesh, R. Sakthivel, N.I. Mahmudov, S.M. Anthoni, Approximate controllability of fractional integrodifferential evolution equations. Journal of Applied Mathematics 2013 (2013), Article ID 291816, 7 pp.

  15. L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators. Mech. Syst. Signal Process. 5 (1991), 81–88.

    Article  Google Scholar 

  16. S. Goldberg, Unbounded Linear Operators. McGraw-Hill, New York (1966).

    MATH  Google Scholar 

  17. J.H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167 (1998), 57–58.

    Article  MathSciNet  Google Scholar 

  18. H.R. Henríquez, Fundamentos de Análisis Funcional. Editorial Académica Española, Saarbrücken (2012).

    Google Scholar 

  19. H.R. Henríquez, Introducción a la Integración Vectorial. Editorial Académica Española, Saarbrücken (2012).

    Google Scholar 

  20. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).

    Book  Google Scholar 

  21. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Ser. North-Holland Mathematics Studies, Vol. 204, Elsevier (2006).

  22. V.I. Korobov, R. Rabakh, Exact controllability in Banach Spaces. Differential Equations 15, No 12 (1979), 1531–1537.

    MathSciNet  MATH  Google Scholar 

  23. S. Kumar, N. Sukavanam, Controllability of fractional order system with nonlinear term having integral contractor. Fract. Calc. Appl. Anal. 16, No 4 (2013), 791–801; DOI: 10.2478/s13540-013-0049-0; http://www.degruyter.com/view/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  24. S. Lang, Real and Functional Analysis. Third Edition. Springer-Verlag, New York (1993).

    Book  Google Scholar 

  25. K. Li, J. Peng, J. Gao, Controllability of nonlocal fractional differential systems of order α ∈ (1, 2) in Banach spaces. Reports on Math. Physics 71, No 1 (2013), 33–43.

    Article  MathSciNet  Google Scholar 

  26. J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 1140–1153.

    Article  MathSciNet  Google Scholar 

  27. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, Singapore (2010).

    Book  Google Scholar 

  28. C.-M. Marle, Mesures et Probabilités. Hermann, Paris (1974).

    MATH  Google Scholar 

  29. D. Matignon, d’Andréa-Novel, Some results on controllability and observability of finite dimensional fractional differential systems. In: Proc. of the CESA’96 IMACS Multiconference, Computational Engineering in Systems Applications (Ed. P. Borne) (1996), 952–956.

    Google Scholar 

  30. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).

    Book  Google Scholar 

  31. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  32. J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus. Springer, Dordrecht (2007).

    Book  Google Scholar 

  33. J.-R. Wang, Y. Zhou, Analysis of nonlinear fractional control systems in Banach spaces. Nonlinear Analysis 74, No 17 (2011), 5929–5942.

    Article  MathSciNet  Google Scholar 

  34. J.-R. Wang, Z. Fan, Y. Zhou, Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J. Optim. Theory Appl. 154 (2012), 292–302.

    Article  MathSciNet  Google Scholar 

  35. J.-R. Wang, Y. Zhou, Complete controllability of fractional evolution systems. Commun. Nonlinear Sci. Numer. Simul. 17, No 11 (2012), 4346–4355.

    Article  MathSciNet  Google Scholar 

  36. J-R. Wang, Y. Zhou, W. Wei, Optimal feedback control for semilinear fractional evolution equations in Banach spaces. Systems & Control Lett. 61, No 4 (2012), 472–476.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Therese Mur.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mur, T., Henríquez, H.R. Controllability of Abstract Systems of Fractional Order. FCAA 18, 1379–1398 (2015). https://doi.org/10.1515/fca-2015-0080

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0080

Keywords

Navigation