Skip to main content
Log in

Correlated electrons in the presence of disorder

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract.

Several new aspects of the subtle interplay between electronic correlations and disorder are reviewed. First, the dynamical mean-field theory (DMFT) together with the geometrically averaged (“typical”) local density of states is employed to compute the ground state phase diagram of the Anderson-Hubbard model at half-filling. This non-perturbative approach is sensitive to Anderson localization on the one-particle level and hence can detect correlated metallic, Mott insulating and Anderson insulating phases and can also describe the competition between Anderson localization and antiferromagnetism. Second, we investigate the effect of binary alloy disorder on ferromagnetism in materials with f-electrons described by the periodic Anderson model. A drastic enhancement of the Curie temperature Tc caused by an increase of the local f-moments in the presence of disordered conduction electrons is discovered and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. de Boer, E.J.W. Verwey, Proc. Phys. Soc. 49, 59 (1937)

    Article  ADS  Google Scholar 

  2. N.F. Mott, Proc. Phys. Soc. 49, 57 (1937)

    Article  ADS  Google Scholar 

  3. D. Pines, The Many-Body Problem (W.A. Benjamin, Reading, 1962)

  4. N.F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1990)

  5. P. Fulde, Electron Correlations in Molecules and Solids (Springer, Heidelberg, 1995)

  6. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  7. P. Fazekas, Lecture Notes on Electron Correlation and Magnetism (World Scientific, Singapore, 1999)

  8. J. Spałek, Eur. J. Phys. 21, 511 (2000)

    Article  Google Scholar 

  9. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  10. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  11. D. Vollhardt, P. Wölfle, in Electronic Phase Transitions, edited byW.Hanke, Y.V.Kopaev (North Holland, Amsterdam, 1992), p. 1

  12. B. Kramer, A. Mac Kinnon, Rep. Prog. Phys. 56, 1469 (1993)

    Article  ADS  Google Scholar 

  13. F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

    Article  ADS  Google Scholar 

  14. A. Lagendijk, B. van Tiggelen, D.S. Wiersma, Physics Today 62, 24 (2009)

    Article  Google Scholar 

  15. A. Aspect, M. Inguscio, Physics Today 62, 30 (2009)

    Article  Google Scholar 

  16. A. Richardella, P. Roushan, S. Mack, B. Zhou, D.A. Huse, D.D. Awschalom, A. Yazdani, Science 327, 665 (2010)

    Article  ADS  Google Scholar 

  17. L. Sanchez-Palencia, M. Lewenstein, Nature Phys. 6, 87 (2010)

    Article  ADS  Google Scholar 

  18. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  19. D. Belitz and T.R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994)

    Article  ADS  Google Scholar 

  20. S.V. Kravchenko, G.V. Kravchenko, J.E. Furneaux, V.M. Pudalov, M. D’Iorio, Phys. Rev. B 50, 8039 (1994)

    Article  ADS  Google Scholar 

  21. D. Popović, A.B. Fowler, S. Washburn, Phys. Rev. Lett. 79, 1543 (1997)

    Article  ADS  Google Scholar 

  22. S.V. Kravchenko and M.P. Sarachik, Rep. Prog. Phys. 67, 1 (2004)

    Article  ADS  Google Scholar 

  23. H. von Löhneysen, Adv. Solid State Phys. 40, 143 (2000)

    Article  Google Scholar 

  24. A.M. Finkelshtein, Sov. Phys. JEPT 75, 97 (1983)

    Google Scholar 

  25. C. Castellani, C. Di Castro, P.A. Lee, M. Ma, Phys. Rev. B 30, 527 (1984)

    Article  ADS  Google Scholar 

  26. M.A. Tusch, D.E. Logan, Phys. Rev. B 48, 14843 (1993)

    Article  ADS  Google Scholar 

  27. M.A. Tusch, D.E. Logan, Phys. Rev. B 51, 11940 (1995)

    Article  ADS  Google Scholar 

  28. D.L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994)

    Article  ADS  Google Scholar 

  29. P.J.H. Denteneer, R.T. Scalettar, N. Trivedi, Phys. Rev. Lett. 87, 146401 (2001)

    Article  ADS  Google Scholar 

  30. D. Heidarian and N. Trivedi, Phys. Rev. Lett. 93126401 (2004)

    Article  ADS  Google Scholar 

  31. N.F. Mott, Proc. Phys. Soc. A 62, 416 (1949)

    Article  ADS  Google Scholar 

  32. E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)

    Article  ADS  Google Scholar 

  33. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

    Article  ADS  Google Scholar 

  34. E. Müller-Hartmann, Z. Phys. B 76, 211 (1989)

    Article  ADS  Google Scholar 

  35. V. Janiš, Z. Phys. B 83, 227 (1991)

    Article  ADS  Google Scholar 

  36. V. Janiš, D. Vollhardt, Int. J. Mod. Phys. 6, 731 (1992)

    Article  ADS  Google Scholar 

  37. A. Georges, G. Kotliar, Phys. Rev. B 45, 6479 (1992)

    Article  ADS  Google Scholar 

  38. M. Jarrell, Phys. Rev. Lett. 69, 168 (1992)

    Article  ADS  Google Scholar 

  39. D. Vollhardt, in Correlated Electron Systems, edited byV.J.Emery (World Scientific, Singapore, 1993), p. 57

  40. Th. Pruschke, M. Jarrell, J.K. Freericks, Adv. Phys. 44, 187 (1995)

    Article  ADS  Google Scholar 

  41. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  42. K. Held, I.A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A.K. McMahan, R.T. Scalettar, Th. Pruschke, V.I. Anisimov, D. Vollhardt, Psi-k Newsletter 56, 65 (2003); reprinted in Phys. Status Solidi B 243, 2599 (2006)

    Google Scholar 

  43. G. Kotliar, D. Vollhardt, Physics Today 57, 53 (2004)

    Article  Google Scholar 

  44. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  45. J.K. Freericks, V. Zlatić, Rev. Mod. Phys. 75, 1333 (2003)

    Article  ADS  Google Scholar 

  46. J.K. Freericks, Transport in Multilayered Nanostructures — The Dynamical Mean-Field Approach (Imperial College Press, London, 2006)

  47. K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005)

    Article  ADS  Google Scholar 

  48. K. Byczuk, Phys. Rev. B 71, 205105 (2005)

    Article  ADS  Google Scholar 

  49. K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. Lett. 102, 146403 (2009)

    Article  ADS  Google Scholar 

  50. D. Semmler, K. Byczuk, W. Hofstetter, Phys. Rev. B 81, 115111 (2010)

    Article  ADS  Google Scholar 

  51. V. Dobrosavljević, G. Kotliar, Phys. Rev. Lett. 78, 3943 (1997)

    Article  ADS  Google Scholar 

  52. V. Dobrosavljević, A.A. Pastor, B.K. Nikolić, Europhys. Lett. 62, 76 (2003)

    Article  ADS  Google Scholar 

  53. G. Schubert, A. Weiße, H. Fehske, in High Performance Computing in Science and Engineering Garching 2004, edited byA.Bode, F.Durst (Springer, Heidelberg, 2005), p. 237

  54. G. Schubert, J. Schleede, K. Byczuk, H. Fehske, D. Vollhardt, Phys. Rev. B 81, 155106 (2010)

    Article  ADS  Google Scholar 

  55. M. Ulmke, V. Janiš, D. Vollhardt, Phys. Rev. B 51, 10411 (1995)

    Article  ADS  Google Scholar 

  56. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  57. W. Hofstetter, Phys. Rev. Lett. 85, 1508 (2000)

    Article  ADS  Google Scholar 

  58. R. Bulla, Th. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  59. Th. Pruschke, Prog. Theo. Phys. Suppl. 160, 274 (2005)

    Article  ADS  Google Scholar 

  60. A. Singh, M. Ulmke, D. Vollhardt, Phys. Rev. B 58, 8683 (1998)

    Article  ADS  Google Scholar 

  61. R. Bulla, M. Potthoff, Eur. Phys. J. B 13, 257 (2000)

    Article  ADS  Google Scholar 

  62. K. Byczuk, M. Ulmke, D. Vollhardt, Phys. Rev. Lett. 90, 196403 (2003)

    Article  ADS  Google Scholar 

  63. K. Byczuk, W. Hofstetter, D. Vollhardt, Phys. Rev. B 69, 045112 (2004)

    Article  ADS  Google Scholar 

  64. U. Yu, K. Byczuk, D. Vollhardt, Phys. Rev. Lett. 100, 246401 (2008)

    Article  ADS  Google Scholar 

  65. M. Ulmke, Eur. Phys. J. B 1, 301 (1998)

    Article  ADS  Google Scholar 

  66. J. Wahle, N. Blümer, J. Schlipf, K. Held, D. Vollhardt, Phys. Rev. B 58, 12749 (1998)

    Article  ADS  Google Scholar 

  67. K. Byczuk, M. Ulmke, Eur. Phys. J. B 45, 449 (2005)

    Article  ADS  Google Scholar 

  68. D. Meyer, Solid State Commun. 121, 565 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vollhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byczuk, K., Hofstetter, W., Yu, U. et al. Correlated electrons in the presence of disorder. Eur. Phys. J. Spec. Top. 180, 135–151 (2009). https://doi.org/10.1140/epjst/e2010-01215-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01215-2

Keywords

Navigation