Skip to main content
Log in

AAK24: Global QCD analysis on polarized parton distribution in the presence of \(A_2\) asymmetry measurements

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article introduces AAK24, a Next-to-Leading Order QCD analysis of polarized data from both polarized Deep Inelastic Scattering (DIS) and Semi-Inclusive Deep Inelastic Scattering (SIDIS) experiments on the nucleon. The AAK24 QCD analysis incorporates SU(2) and SU(3) symmetry breaking, specifically \(\delta \bar{u} \ne \delta \bar{d} \ne \delta \bar{s}\), while assuming \(\delta \bar{s}\) and \(\delta s\) are equal. Emphasizing the significance of the semi-inclusive data, the study explores the determination of polarized sea-quark distributions. Recent experimental data from JLAB17, COMPASS16, and COMPASS17, including the \(A_2\) asymmetry measurements along with SIDIS observables, are thoroughly examined for their impact on the central values of polarized PDFs, their uncertainties, and overall fit quality. Additionally, we include the non-perturbative target mass corrections as well as higher-twist terms (HT) which are particularly important. In this work, the uncertainties are quantified using the standard Hessian method. The main results and findings of the AAK24 QCD analysis show overall good agreement with the analyzed experimental data, aligning well with other polarized PDF determinations, particularly DSSV14, LSS10, JAM17, and AKS14, all considering SU(2) and SU(3) symmetry breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data in a repository. [Authors comment: This data sets generated during the current study are available from the corresponding author on responsible request.]

References

  1. A. Deur, S.J. Brodsky, G.F. De Téramond, Rept. Prog. Phys. 82, 076201 (2019)

    Article  ADS  Google Scholar 

  2. C.A. Aidala, S.D. Bass, D. Hasch, G.K. Mallot, Rev. Mod. Phys. 85, 655–691 (2013)

    Article  ADS  Google Scholar 

  3. J.J. Ethier, E.R. Nocera, Ann. Rev. Nucl. Part. Sci. 70, 43–76 (2020)

    Article  ADS  Google Scholar 

  4. R. Abdul Khalek, A. Accardi, J. Adam, D. Adamiak, W. Akers, M. Albaladejo, A. Al-bataineh, M.G. Alexeev, F. Ameli, P. Antonioli et al., Nucl. Phys. A 1026, 122447 (2022)

    Article  Google Scholar 

  5. D.P. Anderle, T.J. Hou, H. Xing, M. Yan, C.P. Yuan, Y. Zhao, JHEP 08, 034 (2021)

    Article  ADS  Google Scholar 

  6. C. Adolph et al., [COMPASS] Phys. Lett. B 753, 18–28 (2016)

  7. D. De Florian, G.A. Lucero, R. Sassot, M. Stratmann, W. Vogelsang, Phys. Rev. D 100(11), 114027 (2019)

    Article  ADS  Google Scholar 

  8. T. Khan, T. Liu, R.S. Sufian, Phys. Rev. D 108(7), 074502 (2023)

    Article  ADS  Google Scholar 

  9. D. Adamiak et al., [Jefferson Lab Angular Momentum] Phys. Rev. D 104(3), 031501 (2021)

  10. F. Arbabifar, S. Atashbar Tehrani, H. Khanpour, Phys. Rev. C 108(3), 035203 (2023)

    Article  ADS  Google Scholar 

  11. F. Taghavi-Shahri, H. Khanpour, S. Atashbar Tehrani, Z. Alizadeh Yazdi, Phys. Rev. D 93(11), 114024 (2016)

    Article  ADS  Google Scholar 

  12. M. Hirai et al., [Asymmetry Analysis] Nucl. Phys. B 813, 106–122 (2009)

  13. E. Leader, A.V. Sidorov, D.B. Stamenov, Phys. Rev. D 91(5), 054017 (2015)

    Article  ADS  Google Scholar 

  14. H. Khanpour, S.T. Monfared, S. Atashbar Tehrani, Phys. Rev. D 95(7), 074006 (2017)

    Article  ADS  Google Scholar 

  15. N. Sato et al., [Jefferson Lab Angular Momentum] Phys. Rev. D 93(7), 074005 (2016)

  16. J. Blumlein, H. Bottcher, Nucl. Phys. B 841, 205 (2010)

    Article  ADS  Google Scholar 

  17. D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Phys. Rev. D 80, 034030 (2009)

    Article  ADS  Google Scholar 

  18. D. Adamiak, N. Baldonado, Y. V. Kovchegov, W. Melnitchouk, D. Pitonyak, N. Sato, M. D. Sievert, A. Tarasov and Y. Tawabutr, [arXiv:2308.07461 [hep-ph]]

  19. F. Arbabifar, A.N. Khorramian, M. Soleymaninia, Phys. Rev. D 89(3), 034006 (2014)

    Article  ADS  Google Scholar 

  20. H. Nematollahi, A. Mirjalili, S. Atashbar Tehrani, Phys. Rev. D 107(5), 054033 (2023)

    Article  ADS  Google Scholar 

  21. D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Phys. Rev. Lett. 113(1), 012001 (2014)

    Article  ADS  Google Scholar 

  22. E. Leader, A.V. Sidorov, D.B. Stamenov, Phys. Rev. D 82, 114018 (2010)

    Article  ADS  Google Scholar 

  23. C. Amsler et al., [Particle Data Group] Phys. Lett. B 667, 1 (2008)

  24. H.J. Lipkin, Phys. Lett. B 214, 429 (1988)

    Article  ADS  Google Scholar 

  25. H.J. Lipkin, Phys. Lett. B 230, 135 (1989)

    Article  ADS  Google Scholar 

  26. F.E. Close, R.G. Roberts, Phys. Rev. Lett. 60, 1471 (1988)

    Article  ADS  Google Scholar 

  27. M. Roos, Phys. Lett. B 246, 179 (1990)

    Article  ADS  Google Scholar 

  28. Z. Dziembowski, J. Franklin, J. Phys. G 17, 213 (1991)

    Article  ADS  Google Scholar 

  29. P.G. Ratcliffe, Phys. Lett. B 242, 271 (1990)

    Article  ADS  Google Scholar 

  30. P.G. Ratcliffe, Phys. Lett. B 365, 383 (1996). arXiv:hep-ph/0012133

    Article  ADS  Google Scholar 

  31. S.L. Zhu, G. Sacco, M.J. Ramsey-Musolf, Phys. Rev. D 66, 034021 (2002)

    Article  ADS  Google Scholar 

  32. E. Leader, D.B. Stamenov, Phys. Rev. D 67, 037503 (2003)

    Article  ADS  Google Scholar 

  33. C. Adolph et al., [COMPASS] Phys. Lett. B 769, 34–41 (2017)

  34. R. Fersch et al., [CLAS] Phys. Rev. C 96(6), 065208 (2017)

  35. B. Lampe, E. Reya, Phys. Rept. 332, 1–163 (2000)

    Article  ADS  Google Scholar 

  36. Y.B. Dong, Phys. Lett. B 641, 272 (2006)

    Article  ADS  Google Scholar 

  37. Y.B. Dong, Phys. Rev. C 78, 028201 (2008)

    Article  ADS  Google Scholar 

  38. Y.B. Dong, Phys. Lett. B 653, 18 (2007)

    Article  ADS  Google Scholar 

  39. Y.B. Dong, D.Y. Chen, Nucl. Phys. A 791, 342 (2007)

    Article  ADS  Google Scholar 

  40. A.V. Sidorov, D.B. Stamenov, Mod. Phys. Lett. A 21, 1991 (2006)

    Article  ADS  Google Scholar 

  41. O. Nachtmann, Nucl. Phys. B 63, 237 (1973)

    Article  ADS  Google Scholar 

  42. A. Piccione, G. Ridolfi, Nucl. Phys. B 513, 301–316 (1998)

    Article  ADS  Google Scholar 

  43. A. Courtoy, A.S. Miramontes, H. Avakian, M. Mirazita, S. Pisano, Phys. Rev. D 106(1), 014027 (2022)

    Article  ADS  Google Scholar 

  44. A. Mirjalili, S. Atashbar Tehrani, Phys. Rev. D 105(7), 074023 (2022)

    Article  ADS  Google Scholar 

  45. L.W. Whitlow, S. Rock, A. Bodek, E.M. Riordan, S. Dasu, Phys. Lett. B 250, 193–198 (1990)

    Article  ADS  Google Scholar 

  46. M. Arneodo et al., [New Muon], Phys. Lett. B 364, 107–115 (1995)

  47. D. de Florian, M. Stratmann, W. Vogelsang, Phys. Rev. D 57, 5811–5824 (1998)

    Article  ADS  Google Scholar 

  48. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 28, 455–473 (2003)

    Article  ADS  Google Scholar 

  49. T.J. Hou, J. Gao, T.J. Hobbs, K. Xie, S. Dulat, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt et al., Phys. Rev. D 103(1), 014013 (2021)

    Article  ADS  Google Scholar 

  50. D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 75, 114010 (2007)

    Article  ADS  Google Scholar 

  51. D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 76, 074033 (2007)

    Article  ADS  Google Scholar 

  52. J. Ashman et al. [European Muon Collaboration]

  53. J. Ashman et al., European Muon Collaboration. Nucl. Phys. B 328, 1 (1989)

  54. B. Adeva et al., Spin Muon Collaboration. Phys. Rev. D 58, 112001 (1998)

  55. M.G. Alekseev et al., COMPASS Collaboration. Phys. Lett. B 690, 466 (2010)

  56. V.Y. Alexakhin et al., COMPASS Collaboration. Phys. Lett. B 647, 8 (2007)

  57. P.L. Anthony et al., E142 Collaboration. Phys. Rev. D 54, 6620 (1996)

  58. K. Abe et al., E143 collaboration. Phys. Rev. D 58, 112003 (1998)

  59. K. Abe et al., E154 Collaboration. Phys. Rev. Lett. 79, 26 (1997)

  60. P.L. Anthony et al., E155 Collaboration. Phys. Lett. B 493, 19 (2000)

  61. P.L. Anthony et al., E155 Collaboration. Phys. Lett. B 463, 339 (1999)

  62. S.M.C. Collaboration, B. Adeva et al., Phys. Lett. B 420, 180 (1998)

    Article  ADS  Google Scholar 

  63. K. Ackerstaff et al., HERMES Collaboration. Phys. Lett. B 404, 383 (1997)

  64. A. Airapetian et al., HERMES Collaboration. Phys. Lett. B 442, 484 (1998)

  65. A. Airapetian et al., HERMES Collaboration. Phys. Rev. D 75, 012007 (2007)

  66. K.V. Dharmawardane et al., CLAS Collaboration. Phys. Lett. B 641, 11 (2006)

  67. X. Zheng et al., JLab/Hall A Collaboration. Phys. Rev. Lett. 92, 012004 (2004)

  68. K. Abe et al., Phys. Rev. Lett. 76, 587–591 (1996)

    Article  ADS  Google Scholar 

  69. P.L. Anthony et al., E155. Phys. Lett. B 553, 18–24 (2003)

  70. P.L. Anthony et al., E155. Phys. Lett. B 458, 529–535 (1999)

  71. K. Abe et al., E154. Phys. Lett. B 404, 377–382 (1997)

  72. D. Adams et al., Spin Muon (SMC). Phys. Lett. B 396, 338–348 (1997)

  73. A. Airapetian et al., HERMES. Eur. Phys. J. C 72, 1921 (2012)

  74. M.G. Alekseev et al., COMPASS Collaboration. Phys. Lett. B 660, 458 (2008)

  75. M.G. Alekseev et al., COMPASS Collaboration. Phys. Lett. B 680, 217 (2009)

  76. M.G. Alekseev et al., COMPASS Collaboration. Phys. Lett. B 693, 227 (2010)

  77. F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    Article  ADS  Google Scholar 

  78. F. James, “MINUIT Function Minimization and Error Analysis: Reference Manual Version 94.1,” CERN-D-506, CERN-D506

  79. J. Pumplin, D. Stump, R. Brock, D. Casey, J. Huston, J. Kalk, H.L. Lai, W.K. Tung, Phys. Rev. D 65, 014013 (2001)

    Article  ADS  Google Scholar 

  80. A. Accardi, T.J. Hobbs, X. Jing, P.M. Nadolsky, Eur. Phys. J. C 81(7), 603 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the Iran National Science Foundation (INSF) under grant number 4013570. S. A. T. and H. K. are also grateful to the School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM). F. A. acknowledges the Farhangian University for the provided support to conduct this research. H. Khanpour appreciates the financial support from NAWA under grant number BPN/ULM/2023/1/00160 and from the IDUB program at the AGH University. We also thank Dimiter Stamenov for providing the necessary LSS10 grids and Rodolfo Sassot for supplying the required DSSV14 grids data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamzeh Khanpour.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbabifar, F., Tehrani, S.A. & Khanpour, H. AAK24: Global QCD analysis on polarized parton distribution in the presence of \(A_2\) asymmetry measurements. Eur. Phys. J. Plus 139, 834 (2024). https://doi.org/10.1140/epjp/s13360-024-05601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05601-5

Navigation