Skip to main content
Log in

Generalized mathematical novel model of thermoelastic diffusion with four phase lags and higher-order time derivative

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, taking into account the influences of thermal and diffusion, a new four-phase-lag model comprising the macroscopic and microscopic is constructed. The introduced model is an extension of the papers of Nowacki (Bull Acad Pol Sci Ser Sci Tech 22:55–64, 1974; Bull Acad Pol Sci Ser Sci Tech 22:129–135, 1974; Bull Acad Pol Sci Ser Sci Tech 22:257–266, 1974; Proc Vib Prob 15:105–128, 1974), Sherief et al. (Int J Eng Sci 42:591–608, 2004) and Aouadi (J Therm Stress 30:665–678, 2007). In this model, the Fourier’s and the Fick’s laws have been modified to include higher-order time derivatives of heat flow vector, the gradient of temperature, diffusing mass flux and gradient of chemical potential. Many models in the thermoelastic-diffusion field have been deduced as special cases from the current investigation. Using the resulting formulation, we have studied a thermoelastic-diffusion interaction in a half-space exposed to thermal and chemical shock. Also, the sensitivity of the studied field variables to the variation of the parameters of higher-order time derivative has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(\lambda , \mu \) :

Lamé’s constants

\(\alpha _{t}\) :

Thermal expansion coefficient

\(\alpha _{c}\) :

Coefficient of linear diffusion

\(\beta _{1}=(3\lambda +2\mu )\alpha _{t}\) :

Thermal coupling parameter

\(T_{0}\) :

Environmental temperature

\(\theta =T-T_{0}\) :

Temperature increment

T :

Absolute temperature

\(C_{e}\) :

Specific heat

\(e=\mathrm{div}\,{{\varvec{u}}}\) :

Cubical dilatation

\(\sigma _{ij}\) :

Stress tensor

\(e_{ij}\) :

Strain tensor

\({{\varvec{u}}}\) :

Displacement vector

\({{\varvec{q}}}\) :

Heat flux vector

\({\varvec{\eta }}\) :

Flow of diffusing mass vector

lmnh :

Higher-order time derivatives

K :

Thermal conductivity

\(\rho \) :

Material density

Q :

Heat source

\(\beta _{2}=(3\lambda +2\mu )\alpha _{c}\) :

Diffusion coupling parameter

\(\delta _{ij}\) :

Kronecker’s delta function

\(\nabla ^{2}\) :

Laplacian operator

\(\tau _{q}\) :

Phase lag of heat flux

\(\tau _{\theta }\) :

Phase lag of temperature gradient

\(\tau _{\eta }\) :

Phase lag of diffusing mass

\(\tau _{p}\) :

Phase lag of chemical potential gradient

\(\alpha \) :

Fractional order

D :

Diffusion coefficient

P :

Chemical potential

C :

Concentration of diffusion material

a :

Thermoelastic diffusion effect

References

  1. H. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solid. 15, 299–309 (1967)

    Google Scholar 

  2. R.B. Hetnarski, J. Ignaczak, Generalized thermoelasticity. J. Therm. Stress. 22, 451–476 (1999)

    Google Scholar 

  3. W. Nowacki, Dynamical problems of thermodiffusion in solids. I. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 22, 55–64 (1974)

    Google Scholar 

  4. W. Nowacki, Dynamical problems of thermodiffusion in solids. II. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 22, 129–135 (1974)

    Google Scholar 

  5. W. Nowacki, Dynamical problems of thermodiffusion in solids. III. Bull. Acad. Pol. Sci. Ser. Sci. Tech. 22, 257–266 (1974)

    Google Scholar 

  6. W. Nowacki, Dynamical problems of thermodiffusion in elastic solids. Proc. Vib. Prob. 15, 105–128 (1974)

    Google Scholar 

  7. Z.S. Olesiak, Y.A. Pyryev, A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder. Int. J. Eng. Sci. 33, 773–780 (1995)

    Google Scholar 

  8. J. Genin, W. Xu, Thermoelastic plastic metals with mass diffusion. ZAMP 50(4), 511–528 (1999)

    Google Scholar 

  9. H.H. Sherief, F. Hamza, H.A. Saleh, The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci. 42, 591–608 (2004)

    Google Scholar 

  10. H.H. Sherief, H.A. Saleh, A half-space problem in the theory of generalized thermoelastic diffusion. Int. J. Solids Struct. 42, 4484–4493 (2005)

    Google Scholar 

  11. M. Aouadi, Uniqueness and reciprocity theorems in the theory of generalized thermoelastic diffusion. J. Therm. Stress. 30, 665–678 (2007)

    Google Scholar 

  12. M. Aouadi, Generalized Theory of thermoelastic diffusion for anisotropic media. J. Therm. Stress. 31, 270–285 (2008)

    Google Scholar 

  13. M. Aouadi, A generalized thermoelastic diffusion problem for an infinitely long solid cylinder. Int. J. Math. Math. Sci. 2006, 1–15 (2006)

    Google Scholar 

  14. M. Aouadi, A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion. Int. J. Solids Struct. 44, 5711–5722 (2007)

    Google Scholar 

  15. J.A. Gawinecki, A. Szymaniec, Global solution of the Cauchy problem in nonlinear thermoelastic diffusion in solid body. Proc. Appl. Math. Mech. (PAMM) 1, 446–447 (2002)

    Google Scholar 

  16. J. Gawinecki, P. Kacprzyk, P. Bar-Yoseph, Initial boundary value problem for some coupled nonlinear parabolic system of partial differential equations appearing in thermoelastic diffusion in solid body. J. Anal. Appl. 19, 121–130 (2000)

    Google Scholar 

  17. S. Deswal, K.K. Kalkal, S.S. Sheoran, Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction. Physica B 496, 57–68 (2016)

    Google Scholar 

  18. T. He, C. Li, S. Shi, Y. Ma, A two-dimensional generalized thermoelastic diffusion problem for a half-space. Eur. J. Mech. A/Solids 52, 37–43 (2015)

    Google Scholar 

  19. J.J. Tripathi, G.D. Kedar, K.C. Deshmukh, Two-dimensional generalized thermoelastic diffusion in a half-space under axisymmetric distributions. Acta Mech. 226, 3263–3274 (2015)

    Google Scholar 

  20. C.L. Li, H.L. Guo, X.G. Tian, A size-dependent generalized thermoelastic diffusion theory and its application. J. Therm. Stress. 40, 603–626 (2017)

    Google Scholar 

  21. M. Aouadi, F. Passarella, V. Tibullo, A bending theory of thermoelastic diffusion plates based on Green-Naghdi theory. Eur. J. Mech. A/Solids 65, 123–135 (2017)

    Google Scholar 

  22. S. Deswal, K.K. Kalkal, R. Yadav, Response of fractional ordered micropolar thermoviscoelastic half-space with diffusion due to ramp type mechanical load. Appl. Math. Model. 49, 144–161 (2017)

    Google Scholar 

  23. C. Xiong, Y. Niu, Fractional-order generalized thermoelastic diffusion theory. Appl. Math. Mech. Engl. Ed. 38, 1091–1108 (2017)

    Google Scholar 

  24. M.I.A. Othman, E.E.M. Eraki, Effect of gravity on generalized thermoelastic diffusion due to laser pulse using dual-phase-lag model. Multidiscip. Model. Mater. Struct. 14, 457–481 (2018)

    Google Scholar 

  25. S.A. Davydov, A.V. Zemskov, E.R. Akhmetova, Thermoelastic diffusion multicomponent half-space under the effect of surface and Bulk unsteady perturbations. Math. Comput. Appl. 24, 26 (2019)

    Google Scholar 

  26. A.E. Abouelregal, Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat. Waves Random Complex Media (2019). https://doi.org/10.1080/17455030.2019.1628320

  27. A.E. Abouelregal, On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags. J. Appl. Comput. Mech. (2019). https://doi.org/10.22055/JACM.2019.29960.16492019

  28. A.E. Abouelregal, Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab447f

  29. R. Quintanilla, Exponential stability in the dual-phase-lag heat conduction theory. J. Non-Equilib. Thermodyn. 27, 217–227 (2002)

    Google Scholar 

  30. L. Wang, M. Xu, X. Zhou, Well-posedness and solution structure of dual-phase-lagging heat conduction. Int. J. Heat Mass Transf. 44, 1659–1669 (2001)

    Google Scholar 

  31. L. Wang, M. Xu, Well-posedness of dual-phase-lagging heat equation: higher dimensions. Int. J. Heat Mass Transf. 45, 1165–1171 (2002)

    Google Scholar 

  32. M. Xu, L. Wang, Thermal oscillation and resonance in dual-phase-lagging heat conduction. Int. J. Heat Mass Transf. 45, 1055–1061 (2002)

    Google Scholar 

  33. R. Quintanilla, A well posed problem for the dual-phase-lag heat conduction. J. Therm. Stress. 31, 260–269 (2008)

    Google Scholar 

  34. R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction. J. Therm. Stress. 32, 1270–1278 (2009)

    Google Scholar 

  35. M.A. Biot, Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Google Scholar 

  36. D.Y. Tzou, A unified field approach for heat conduction from macro-to-microscales. ASME J. Heat Transf. 117, 8–16 (1995)

    Google Scholar 

  37. D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Google Scholar 

  38. G. Honig, U. Hirdes, A method for the numerical inversion of Laplace Transform. J. Comput. Appl. Math. 10, 113–132 (1984)

    Google Scholar 

  39. D.Y. Tzou, Macro to Micro-scale Heat Transfer: The Lagging Behavior (Taylor and Francis, Washington, 1996)

    Google Scholar 

  40. A.M. Zenkour, D.S. Mashat, A.E. Abouelregal, Generalized thermodiffusion for an unbounded body with a spherical cavity subjected to periodic loading. J. Mech. Sci. Technol. 26, 749–757 (2012)

    Google Scholar 

  41. F.S. Alzahrani, I.A. Abbas, Generalized thermoelastic diffusion in a nanoscale beam using eigenvalue approach. Acta Mech. 227, 955–968 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Abouelregal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouelregal, A.E. Generalized mathematical novel model of thermoelastic diffusion with four phase lags and higher-order time derivative. Eur. Phys. J. Plus 135, 263 (2020). https://doi.org/10.1140/epjp/s13360-020-00282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00282-2

Navigation