Skip to main content
Log in

The geometric theory of defects description for C60 fullerenes in a rotating frame

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper we investigate a rotating fullerene molecule. We use a geometric theory to describe the fullerene as a two-dimensional spherical space in a rotating frame with topological defects submitted to a non-Abelian gauge field. We write an effective metric describing the fullerene molecule in a rotating frame. We solve the massless Dirac equation in this model and obtain exactly the eigenvalues and eigenfunction of the Hamiltonian. The fullerene molecule is placed in the presence of an Aharanov-Bohm flux and the Hamiltonian for this case is solved exactly. Also, we obtain the analogue of the Aharonov-Carmi phase for this system in a rotating frame and find that the energy depends on the parameters characterizing the disclination, the non-Abelian gauge field and the angular velocity of the molecule. The influence of the rotation on the energy spectrum, eigenvalues, eigenvectors and geometric phase is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  2. J. Gonzalez, F. Guinea, M.A.H. Vozmediano, Phys. Rev. Lett. 69, 1 (1992)

    Article  Google Scholar 

  3. J. Gonzalez, F. Guinea, M.A.H. Vozmediano, Nucl. Phys. B 406, 771 (1993)

    Article  ADS  Google Scholar 

  4. M. Kleman, Points, Lignes, Parois: Dans les Fluides Anisotropes et les Solides Cristallins (Editions de Physique, France, 1977)

  5. B.A. Bilby, E. Smith, Proc. R. Soc. Sect. A 231, 263 (1955)

    Article  ADS  Google Scholar 

  6. B.A. Bilby, E. Smith, Proc. R. Soc. Sect. A 236, 481 (1956)

    Article  ADS  Google Scholar 

  7. E. Kröner, Arch. Ration. Mech. Anal. 4, 18 (1960)

    Google Scholar 

  8. I.E. Dzyaloshinskii, G.E. Volovick, Ann. Phys. 125, 67 (1980)

    Article  ADS  Google Scholar 

  9. H. Kleinert, Phys. Lett. A 130, 59 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Kleinert, Gauge Fields in Condensed Matter, Vol. II, Stresses and Defects (World Scientific, 1989)

  11. M.O. Katanaev, I.V. Volovich, Ann. Phys. (N.Y.) 216, 1 (1992)

    Article  ADS  Google Scholar 

  12. C. Furtado, F. Moraes, A.M. de M. Carvalho, Phys. Lett. A 372, 5368 (2008)

    Article  ADS  Google Scholar 

  13. K. Bakke, C. Furtado, S. Sergeenkov, EPL 87, 30002 (2009)

    Article  ADS  Google Scholar 

  14. M.J. Bueno, C. Furtado, A.M. de M. Carvalho, Eur. Phys. J. B 85, 53 (2012)

    Article  ADS  Google Scholar 

  15. K. Bakke, A.Yu. Petrov, C. Furtado, Ann. Phys. (N.Y.) 327, 2946 (2012)

    Article  ADS  Google Scholar 

  16. A.M. de M. Carvalho, C.A. de Lima Ribeiro, F. Moraes, C. Furtado, Eur. Phys. J. Plus 128, 6 (2013)

    Article  Google Scholar 

  17. K. Bakke, C. Furtado, Phys. Rev. A 87, 012130 (2013)

    Article  ADS  Google Scholar 

  18. K. Bakke, C. Furtado, Phys. Lett. A 376, 1269 (2012)

    Article  ADS  Google Scholar 

  19. G.A. Marques, V.B. Bezerra, C. Furtado, F. Moraes, Int. J. Mod. Phys. A 20, 6051 (2005)

    Article  ADS  Google Scholar 

  20. P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 85, 5190 (2000)

    Article  ADS  Google Scholar 

  21. P.E. Lammert, V.H. Crespi, Phys. Rev. B 69, 035406 (2004)

    Article  ADS  Google Scholar 

  22. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  23. M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. J.K. Pachos, Contemp. Phys. 50, 375 (2009)

    Article  ADS  Google Scholar 

  25. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Spaces (Cambridge University Press, 1982)

  26. D.V. Kolesnikov, V.A. Osipov, Eur. Phys. J. B 49, 465 (2006)

    Article  ADS  Google Scholar 

  27. M. Pudlak, R. Pincak, V.A. Osipov, Phys. Rev. A 75, 025201 (2007)

    Article  ADS  Google Scholar 

  28. M. Pudlak, R. Pincak, V.A. Osipov, Phys. Rev. A 75, 065201 (2007)

    Article  ADS  Google Scholar 

  29. R. Pincak, Phys. Lett. A 340, 267 (2005)

    Article  ADS  Google Scholar 

  30. E. Cavalcante, C. Furtado, J. Phys. Chem. Solids 75, 1265 (2014)

    Article  ADS  Google Scholar 

  31. J.Q. Shen, S. He, F. Zhuang, Eur. Phys. J. D 33, 35 (2005)

    Article  ADS  Google Scholar 

  32. Y. Aharonov, G. Carmi, Found. Phys. 3, 493 (1973)

    Article  ADS  Google Scholar 

  33. J.R.F. Lima, J. Brandão, M.M. Cunha, F. Moraes, Eur. Phys J. D 68, 94 (2014)

    Article  ADS  Google Scholar 

  34. J.R.F. Lima, F. Moraes, Eur. Phys J. B 88, 263 (2015)

    Article  Google Scholar 

  35. M.M. Cunha, J. Brandão, J.R.F. Lima, F. Moraes, Eur. Phys J. B 88, 288 (2015)

    Article  ADS  Google Scholar 

  36. E. Cavalcante, J. Carvalho, C. Furtado, arXiv:1603.04956

  37. A. Iorio, Eur. Phys. J. Plus 127, 156 (2012)

    Article  Google Scholar 

  38. A. Iorio, G. Lambiase, Phys. Rev. D 90, 025006 (2014)

    Article  ADS  Google Scholar 

  39. A. Iorio, Int. J. Mod. Phys. D 4, 1530013 (2015)

    Article  MathSciNet  Google Scholar 

  40. A. Iorio, P. Pais, Phys. Rev. D 92, 125005 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  41. R.D. Johnson, C.S. Yannoni, H.C. Dorn et al., Science 255, 1235 (1992)

    Article  ADS  Google Scholar 

  42. Choongyu Hwang et al., Sci. Rep. 2, 590 (2012)

    Google Scholar 

  43. K. Imura, Y. Yoshimura, Y. Takane, T. Fukui, Phys. Rev. B 86, 235119 (2012)

    Article  ADS  Google Scholar 

  44. C. Furtado, V.B. Bezerra, F. Moraes, Phys. Lett. A 289, 160 (2001)

    Article  ADS  Google Scholar 

  45. J.S. Carvalho, E. Passos, C. Furtado, F. Moraes, Eur. Phys. J. C 57, 817 (2008)

    Article  ADS  Google Scholar 

  46. K. Bakke, C. Furtado, Quantum Inf. Comput. 11, 4444 (2011)

    Google Scholar 

  47. K. Bakke, C. Furtado, Quantum Inf. Process. 12, 119 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Furtado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, G.Q., Cavalcante, E., de M. Carvalho, A.M. et al. The geometric theory of defects description for C60 fullerenes in a rotating frame. Eur. Phys. J. Plus 132, 183 (2017). https://doi.org/10.1140/epjp/i2017-11457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11457-1

Navigation