Skip to main content
Log in

QCD analysis of Lambda hyperon production in DIS target-fragmentation region

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider Lambda-hyperon production in the target-fragmentation region of semi-inclusive deep-inelastic scattering within the framework of fracture functions. We present a first attempt to determine the flavour and energy dependences of these non-perturbative distributions through a simultaneous QCD-based fit to available neutral- and charged-current semi-inclusive-DIS cross sections. Predictions based on the resulting nucleon-to-Lambda fracture functions are in good agreement with data and observables not included in the regression. The successful prediction of the Q 2 dependence of the Lambda multiplicity notably represents the first validation of the perturbative framework implied by fracture functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Basile et al., Nuovo Cimento A 66, 129 (1981)

    Article  ADS  Google Scholar 

  2. L. Trentadue, G. Veneziano, Phys. Lett. B 323, 201 (1994)

    Article  ADS  Google Scholar 

  3. Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  4. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  5. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  6. D. Graudenz, Nucl. Phys. B 432, 351 (1994)

    Article  ADS  Google Scholar 

  7. J.C. Collins, Phys. Rev. D 57, 3051 (1998)

    Article  ADS  Google Scholar 

  8. M. Grazzini, L. Trentadue, G. Veneziano, Nucl. Phys. B 519, 394 (1998)

    Article  ADS  Google Scholar 

  9. J. Levelt, P.J. Mulders, Phys. Rev. D 49, 96 (1994)

    Article  ADS  Google Scholar 

  10. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  11. E. Konishi, A. Ukawa, G. Veneziano, Nucl. Phys. B 157, 45 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  12. D. de Florian, C.A. Garcia Canal, R. Sassot, Nucl. Phys. B 470, 195 (1996)

    Article  ADS  Google Scholar 

  13. D. de Florian, R. Sassot, Nucl. Phys. B 488, 367 (1997)

    Article  ADS  Google Scholar 

  14. C.C. Chang et al., Phys. Rev. D 27, 2776 (1983)

    Article  ADS  Google Scholar 

  15. G.T. Jones et al. (WA21 Collaboration), Z. Phys. C 57, 197 (1993)

    Article  ADS  Google Scholar 

  16. M. Arneodo et al. (EMC Collaboration), Z. Phys. C 34, 283 (1987)

    Article  ADS  Google Scholar 

  17. M.R. Adams et al. (E665 Collaboration), Z. Phys. C 61, 539 (1994)

    Article  ADS  Google Scholar 

  18. A. Airapetian et al. (Hermes Collaboration), Eur. Phys. J. A 47, 113 (2011)

    Article  ADS  Google Scholar 

  19. N.M. Agababyan et al. (SKAT Collaboration), Phys. At. Nucl. 70, 1731 (2007)

    Article  Google Scholar 

  20. P. Astier et al. (NOMAD Collaboration), Nucl. Phys. B 621, 3 (2002)

    Article  ADS  Google Scholar 

  21. S. Albino, B.A. Kniehl, G. Kramer, Nucl. Phys. B 803, 42 (2008)

    Article  ADS  Google Scholar 

  22. M. Glück, E. Reya, A. Vogt, Z. Phys. C 67, 433 (1995)

    Article  ADS  Google Scholar 

  23. P. Astier et al. (NOMAD Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 515, 800 (2003)

    Article  ADS  Google Scholar 

  24. M. Derrick et al. (ZEUS Collaboration), Phys. Lett. B 315, 481 (1993)

    Article  ADS  Google Scholar 

  25. T. Ahmed et al. (H1 Collaboration), Nucl. Phys. B 429, 477 (1994)

    Article  ADS  Google Scholar 

  26. A.B. Kaidalov, O.I. Piskunova, Z. Phys. C 30, 145 (1986)

    Article  ADS  Google Scholar 

  27. M. Osipenko et al. (CLAS Collaboration), Phys. Rev. D 80, 032004 (2009)

    Article  ADS  Google Scholar 

  28. F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975)

    Article  ADS  Google Scholar 

  29. D. Allasia et al. (WA25 Collaboration), Nucl. Phys. B 224, 1 (1983)

    Article  ADS  Google Scholar 

  30. D. Allasia et al. (WA25 Collaboration), Phys. Lett. B 154, 231 (1983)

    Google Scholar 

  31. S. Alekhin, S. Kulagin, R. Petti, Phys. Lett. B 675, 433 (2009)

    Article  ADS  Google Scholar 

  32. J.R. Ellis et al., Eur. Phys. J. C 52, 283 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge M. Stratmann and S. Albino for providing us with their fragmentation-function routines. We especially acknowledge D. Naumov for interesting discussions related to backgrounds in Lambda production in DIS and for providing us the neutrino flux parametrisations. We wish to thank the organizers of the Workshop “Strangeness polarization in semi-inclusive and exclusive Lambda production” held in ECT*, Trento, in October 2008 and all the participants for stimulating discussions on this topic. We finally thank Laurent Favart, Dmitry Naumov, Jean-René Cudell and Luca Trentadue for a critical reading of the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Alberto Ceccopieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceccopieri, F.A., Mancusi, D. QCD analysis of Lambda hyperon production in DIS target-fragmentation region. Eur. Phys. J. C 73, 2435 (2013). https://doi.org/10.1140/epjc/s10052-013-2435-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2435-5

Keywords

Navigation