Skip to main content
Log in

G-essence with Yukawa interactions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the g-essence model with Yukawa interactions between a scalar field φ and a Dirac field ψ. For the homogeneous, isotropic and flat Friedmann–Robertson–Walker universe filled with the such g-essence, the exact solution of the model is found. Moreover, we reconstruct the corresponding scalar and fermionic potentials which describe the coupled dynamics of the scalar and fermionic fields. It is shown that some particular g-essence models with Yukawa interactions correspond to the usual and generalized Chaplygin gas unified models of dark energy and dark matter. Also we present some scalar–fermionic Dirac–Born–Infeld models corresponding g-essence models with Yukawa interactions which again describe the unified dark energy–dark matter system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Perlmutter et al., Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999). arXiv:astro-ph/9812133

    Article  ADS  Google Scholar 

  2. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  3. C. Armendariz-Picon, T. Damour, V.F. Mukhanov, k-inflation. Phys. Lett. B 458, 209–218 (1999). arXiv:hep-th/9904075

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Essentials of k-essence. Phys. Rev. D 63, 103510 (2001). arXiv:astro-ph/0006373

    Article  ADS  Google Scholar 

  5. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85, 4438–4441 (2000). arXiv:astro-ph/0004134

    Article  ADS  Google Scholar 

  6. T. Chiba, T. Okabe, M. Yamaguchi, Kinetically driven quintessence. Phys. Rev. D 62, 023511 (2000). arXiv:astro-ph/9912463

    Article  ADS  Google Scholar 

  7. R. De Putter, E.V. Linder, Kinetic k-essence and quintessence. Astropart. Phys. 28, 263–272 (2007). arXiv:0705.0400

    Article  ADS  Google Scholar 

  8. R. Myrzakulov, Fermionic k-essence. arXiv:1011.4337v5

  9. K. Esmakhanova, N. Myrzakulov, G. Nugmanova, L. Chechin, R. Myrzakulov, Integrable and nonintegrable FRW cosmological models induced by some second-order ordinary differential equations. arXiv:1104.3705

  10. G.N. Nugmanova, Sh.R. Myrzakul, O.V. Razina, K.R. Esmakhanova, N.S. Serikbayev, R. Myrzakulov, Some cosmological aspects of Horava-Lifshitz gravity: integrable and nonintegrable models. arXiv:1104.5374

  11. Sh. Myrzakul, K. Esmakhanova, K. Myrzakulov, G. Nugmanova, R. Myrzakulov, FRW cosmological models with integrable and nonintegrable differential equations of state. arXiv:1105.2771

  12. M.O. Ribas, F.P. Devecchi, G.M. Kremer, Fermions as sources of accelerated regimes in cosmology. Phys. Rev. D 72, 123502 (2005). arXiv:gr-qc/0511099

    Article  ADS  Google Scholar 

  13. L.L. Samojeden, F.P. Devecchi, G.M. Kremer, Fermions in Brans-Dicke cosmology. Phys. Rev. D81, 027301 (2010). arXiv:1001.2285

    ADS  Google Scholar 

  14. L.L. Samojeden, G.M. Kremer, F.P. Devecchi, Accelerated expansion in bosonic and fermionic 2D cosmologies with quantum effects. Europhys. Lett. 87, 10001 (2009). arXiv:0906.3315

    Article  ADS  Google Scholar 

  15. K.K. Yerzhanov, P.Yu. Tsyba, Sh.R. Myrzakul, I.I. Kulnazarov, R. Myrzakulov, Accelerated expansion of the Universe driven by G-essence. arXiv:1012.3031

  16. M.O. Ribas, G.M. Kremer, Fermion fields in Einstein-Cartan theory and the accelerated-decelerated transition in a primordial universe. Gravit. Cosmol. 16, 173–177 (2010). arXiv:0902.2696

    Article  MATH  Google Scholar 

  17. Y.F. Cai, J. Wang, Dark energy model with spinor matter and its quintom scenario. Class. Quantum Gravity 25, 165014 (2008). arXiv:0806.3890

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Wang, S.-W. Cui, C.-M. Zhang, Thermodynamics of spinor quintom. Phys. Lett. B 683, 101–107 (2010). arXiv:0806.3890

    Article  MathSciNet  ADS  Google Scholar 

  19. M.O. Ribas, F.P. Devecchi, G.M. Kremer, Cosmological model with non-minimally coupled fermionic field. Europhys. Lett. 81, 19001 (2008). arXiv:0710.5155

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Rakhi, G.V. Vijayagovindan, K. Indulekha, A cosmological model with fermionic field. arXiv:0912.1222

  21. R. Rakhi, G.V. Vijayagovindan, P.A. Noble, K. Indulekha, A cosmological model with fermionic field and Gauss-Bonnet term. Int. J. Mod. Phys. A 25, 1267–1278 (2010). arXiv:0910.3761

    Article  ADS  MATH  Google Scholar 

  22. L.P. Chimento, F.P. Devecchi, M. Forte, G.M. Kremer, Phantom cosmologies and fermions. Class. Quantum Gravity 25, 085007 (2008). arXiv:0707.4455

    Article  MathSciNet  ADS  Google Scholar 

  23. S.V. Anischenko, S.L. Cherkas, V.L. Kalashnikov, Cosmological production of fermions in a flat Friedmann universe with linearly growing scale factor: exactly solvable model. arXiv:0911.0769

  24. B. Saha, Nonlinear spinor field in cosmology. Phys. Rev. D 69, 124006 (2004). arXiv:gr-qc/0308088

    Article  MathSciNet  ADS  Google Scholar 

  25. B. Saha, G.N. Shikin, Nonlinear spinor field in Bianchi type-I Universe filled with perfect fluid: exact self-consistent solutions. J. Math. Phys. 38, 5305 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. B. Saha, Spinor field in bianchi type-I universe: regular solutions. Phys. Rev. D 64, 123501 (2001). arXiv:gr-qc/0107013

    Article  MathSciNet  ADS  Google Scholar 

  27. B. Saha, Spinor felds in Bianchi type-I Universe, physics of particles and nuclei. Phys. Part. Nucl. 37, S13–S44 (2006) (Suppl.)

    Article  Google Scholar 

  28. B. Saha, Nonlinear spinor field in Bianchi type-I cosmology: inflation, isotropization, and late time acceleration. Phys. Rev. D 74, 124030 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  29. B. Vakili, H.R. Sepangi, Time reparameterization in Bianchi type I spinor cosmology. Ann. Phys. 323, 548–565 (2008). arXiv:0709.2988

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. H. Wei, Spinor dark energy and cosmological coincidence problem. Phys. Lett. B 695, 307–311 (2011). arXiv:1002.4230

    Article  ADS  Google Scholar 

  31. T. Dereli, N. Ozdemir, O. Sert, Einstein-Cartan-Dirac theory in (1+2)-dimensions. arXiv:1002.0958

  32. A.B. Balantekin, T. Dereli, An exact cosmological solution of the coupled Einstein-Majorana fermion-scalar field equations. Phys. Rev. D 75, 024039 (2007). arXiv:gr-qc/0701025

    Article  MathSciNet  ADS  Google Scholar 

  33. C. Armendariz-Picon, P. Greene, Spinors, inflation, and non-singular cyclic cosmologies. Gen. Relativ. Gravit. 35, 1637–1658 (2003). arXiv:hep-th/0301129

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. O. Zanusso, L. Zambelli, G.P. Vacca, R. Percacci, Gravitational corrections to Yukawa systems. arXiv:0904.0938

  35. A. Rodigast, T. Schuster, Gravitational corrections to Yukawa and ϕ 4 interactions. arXiv:0908.2422

  36. A. Loeb, N. Weiner, Cores in dwarf galaxies from dark matter with a Yukawa potential. arXiv:1011.6374

  37. S.P. Miao, R.P. Woodard, Leading log solution for inflationary Yukawa. arXiv:gr-qc/0602110

  38. R.P. Woodard, Generalizing Starobinskii’s formalism to Yukawa theory & to scalar QED. arXiv:gr-qc/0608037

  39. K. Atazadeh, H.R. Sepangi, Accelerated expansion in modified gravity with a Yukawa-like term. arXiv:gr-qc/0602028

  40. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)

    Google Scholar 

  41. S. Weinberg, Cosmology (Cambridge, New York, 2007)

    Google Scholar 

  42. R.M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984)

    MATH  Google Scholar 

  43. L.H. Ryder, Quantum Field Theory (Cambridge University Press, Cambridge, 1996)

    MATH  Google Scholar 

  44. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

    MATH  Google Scholar 

  45. R. Myrzakulov, F(T) gravity and k-essence. arXiv:1008.4486

  46. R. Myrzakulov, Pure kinetic k-essence as the cosmic speed-up. Int. J. Theor. Phys. 50, 1876–1886 (2011). arXiv:1008.0779

    Article  Google Scholar 

  47. E. Elizalde, R. Myrzakulov, V.V. Obukhov, D. Saez-Gomez, ΛCDM epoch reconstruction from F(R,G) and modified Gauss-Bonnet gravities. Class. Quantum Gravity 27, 095007 (2010). arXiv:1001.3636

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Myrzakulov, D. Saez-Gomez, A. Tureanu, On the ΛCDM universe in f(G) gravity. Gen. Relativ. Gravit. 43, 1671–1684 (2011). arXiv:1009.0902

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. arXiv:1011.0544

  50. A.Y. Kamenshchik, U. Moschella, V. Pasquier, An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  51. M.C. Bento, O. Bertolami, A.A. Sen, Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification. Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  52. R. Jackiw, Lectures on Fluid Dynamics (Springer, New-York, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Myrzakulov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulnazarov, I., Yerzhanov, K., Razina, O. et al. G-essence with Yukawa interactions. Eur. Phys. J. C 71, 1698 (2011). https://doi.org/10.1140/epjc/s10052-011-1698-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1698-y

Keywords

Navigation