Skip to main content
Log in

R2SM: a package for the analytic computation of the R 2 Rational terms in the Standard Model of the Electroweak interactions

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The analytical package written in FORM presented in this paper allows the computation of the complete set of Feynman Rules producing the Rational terms of kind R2 contributing to the virtual part of NLO corrections in the Standard Model of the Electroweak interactions. Building block topologies filled by means of generic scalars, vectors and fermions, allowing to build these Feynman Rules in terms of specific elementary particles, are explicitly given in the R ξ gauge class, together with the automatic dressing procedure to obtain the Feynman Rules from them. The results in more specific gauges, like the ’t Hooft Feynman one, follow as particular cases, in both the HV and the FDH dimensional regularization schemes. As a check on our formulas, the gauge independence of the total Rational contribution (R1+R2) to renormalized S-matrix elements is verified by considering the specific example of the H→γγ decay process at 1-loop. This package can be of interest for people aiming at a better understanding of the nature of the Rational terms. It is organized in a modular way, allowing a further use of some its files even in different contexts. Furthermore, it can be considered as a first seed in the effort towards a complete automation of the process of the analytical calculation of the R2 effective vertices, given the Lagrangian of a generic gauge theory of particle interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)

    Article  ADS  Google Scholar 

  2. A. Denner, S. Dittmaier, Nucl. Phys. B 734, 62–115 (2006). arXiv:hep-ph/0509141

    Article  ADS  MATH  Google Scholar 

  3. A. Denner, S. Dittmaier, Nucl. Phys. B 844, 199–242 (2011). arXiv:1005.2076 [hep-ph]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon, T. Reiter, Comput. Phys. Commun. 180, 2317–2330 (2009). arXiv:0810.0992 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  5. G. Heinrich, G. Ossola, T. Reiter, F. Tramontano, J. High Energy Phys. 1010, 105 (2010). arXiv:1008.2441 [hep-ph]

    Article  ADS  Google Scholar 

  6. G. ’t Hooft, M. Veltman, Diagrammar, CERN Report 73-9, Geneva, Switzerland (1973), also published in NATO Adv. Stud. Inst. Ser., Ser. B Phys. 4, 177–322 (1974)

  7. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Nucl. Phys. B 425, 217 (1994). arXiv:hep-ph/9403226

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Nucl. Phys. B 435, 59 (1995). arXiv:hep-ph/9409265

    Article  ADS  Google Scholar 

  9. Z. Bern, L.J. Dixon, D.A. Kosower, Nucl. Phys. B 513, 3 (1998). arXiv:hep-ph/9708239

    Article  ADS  Google Scholar 

  10. R. Britto, F. Cachazo, B. Feng, Nucl. Phys. B 725, 275 (2005). arXiv:hep-th/0412103

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J.R. Andersen, J. Archibald, S. Badger et al., Summary Report of the SM and NLO Multileg Working Group, in Proc. of the Les Houches Workshop “Physics at TeV Colliders”, les Houches, France, 8–26 June 2009. arXiv:1003.1241 [hep-ph]

  12. C.F. Berger, Z. Bern, L.J. Dixon et al., arXiv:1009.2338 [hep-ph]

  13. C.F. Berger, Z. Bern, L.J. Dixon et al., Phys. Rev. Lett. 102, 222001 (2009). arXiv:0902.2760 [hep-ph]

    Article  ADS  Google Scholar 

  14. C.F. Berger, Z. Bern, L.J. Dixon et al., Phys. Rev. D 80, 074036 (2009). arXiv:0907.1984 [hep-ph]

    Article  ADS  Google Scholar 

  15. C.F. Berger, Z. Bern, L.J. Dixon et al., Phys. Rev. D 82, 074002 (2010). arXiv:1004.1659 [hep-ph]

    Article  ADS  Google Scholar 

  16. R.K. Ellis, K. Melnikov, G. Zanderighi, Phys. Rev. D 80, 094002 (2009). arXiv:0906.1445 [hep-ph]

    Article  ADS  Google Scholar 

  17. G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau, M. Worek, J. High Energy Phys. 0909, 109 (2009). arXiv:0907.4723 [hep-ph]

    Article  ADS  Google Scholar 

  18. A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini, Phys. Rev. Lett. 103, 012002 (2009). arXiv:0905.0110 [hep-ph]

    Article  ADS  Google Scholar 

  19. A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini, J. High Energy Phys. 1003, 021 (2010). arXiv:1001.4006v1 [hep-ph]

    Article  ADS  Google Scholar 

  20. K. Melnikov, G. Zanderighi, Phys. Rev. D 81, 074025 (2010). arXiv:0910.3671 [hep-ph]

    Article  ADS  Google Scholar 

  21. T. Binoth, N. Greiner, A. Guffanti et al., Phys. Lett. B 685, 293–296 (2010). arXiv:0910.4379 [hep-ph]

    Article  ADS  Google Scholar 

  22. G. Bevilacqua, M. Czakon, C.G. Papadopoulos, M. Worek, Phys. Rev. Lett. 104, 162002 (2010). arXiv:1002.4009 [hep-ph]

    Article  ADS  Google Scholar 

  23. A. Denner, S. Dittmaier, T. Gehrmann, C. Kurz, Nucl. Phys. B 836, 37 (2010). arXiv:1003.0986 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  24. T. Melia, K. Melnikov, R. Rontsch, G. Zanderighi, J. High Energy Phys. 1012, 053 (2010). arXiv:1007.5313 [hep-ph]

    Article  ADS  Google Scholar 

  25. R. Frederix, S. Frixione, K. Melnikov, G. Zanderighi, J. High Energy Phys. 1011, 050 (2010). arXiv:1008.5313 [hep-ph]

    Article  ADS  Google Scholar 

  26. Z.G. Xiao, G. Yang, C.J. Zhu, Nucl. Phys. B 758, 1–34 (2006). arXiv:hep-ph/0607015

    Article  ADS  MATH  Google Scholar 

  27. Z.G. Xiao, G. Yang, C.J. Zhu, Nucl. Phys. B 758, 53–89 (2006). arXiv:hep-ph/0607017

    Article  ADS  MATH  Google Scholar 

  28. T. Binoth, J.P. Guillet, G. Heinrich, J. High Energy Phys. 0702, 013 (2007). arXiv:hep-ph/0609054

    Article  ADS  Google Scholar 

  29. A. Bredenstein, A. Denner, S. Dittmaier, S. Pozzorini, J. High Energy Phys. 0808, 108 (2008). arXiv:0807.1248 [hep-ph]

    Article  ADS  Google Scholar 

  30. C.F. Berger, D. Forde, Ann. Rev. Nucl. Part. Sci. (2010). arXiv:0912.3534 [hep-ph]

  31. Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Rev. D 71, 105013 (2005). arXiv:hep-th/0501240

    Article  MathSciNet  ADS  Google Scholar 

  32. Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Rev. D 72, 125003 (2005). arXiv:hep-ph/0505055

    Article  MathSciNet  ADS  Google Scholar 

  33. Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Rev. D 73, 065013 (2006). arXiv:hep-ph/0507005

    Article  MathSciNet  ADS  Google Scholar 

  34. C.F. Berger, Z. Bern, L.J. Dixon, D. Forde, D.A. Kosower, Phys. Rev. D 74, 036009 (2006). arXiv:hep-ph/0604195

    Article  ADS  Google Scholar 

  35. C.F. Berger, Z. Bern, L.J. Dixon, D. Forde, D.A. Kosower, Phys. Rev. D 75, 016006 (2007). arXiv:hep-ph/0607014

    Article  ADS  Google Scholar 

  36. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, P. Mastrolia, Phys. Lett. B 645, 213 (2007). arXiv:hep-ph/0609191

    Article  ADS  Google Scholar 

  37. C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, P. Mastrolia, J. High Energy Phys. 0703, 111 (2007). arXiv:hep-ph/0612277

    Article  MathSciNet  ADS  Google Scholar 

  38. W.T. Giele, Z. Kunszt, K. Melnikov, J. High Energy Phys. 0804, 049 (2008). arXiv:0801.2237 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  39. R.K. Ellis, W.T. Giele, Z. Kunszt, K. Melnikov, Nucl. Phys. B 822, 270 (2009). arXiv:0806.3467 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  40. P. Mastrolia, G. Ossola, T. Reiter, F. Tramontano, J. High Energy Phys. 1008, 080 (2010). arXiv:1006.0710 [hep-ph]

    Article  ADS  Google Scholar 

  41. G. Ossola, C.G. Papadopoulos, R. Pittau, Nucl. Phys. B 763, 147 (2007). arXiv:hep-ph/0609007

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. G. Ossola, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0805, 004 (2008). arXiv:0802.1876 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  43. A. van Hameren, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0909, 106 (2009). arXiv:0903.4665 [hep-ph]

    Article  ADS  Google Scholar 

  44. G. Bevilacqua, M. Czakon, M.V. Garzelli et al., in Proc. of the 10th DESY Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory, Worlitz, Germany, April 25–30 (2010), published in Nucl. Phys. B, Proc. Suppl. 205–206, 211 (2010). arXiv:1007.4918 [hep-ph]

    Google Scholar 

  45. P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0904, 072 (2009). arXiv:0903.0356 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  46. A. van Hameren, J. High Energy Phys. 0907, 088 (2009). arXiv:0905.1002 [hep-ph]

    Article  Google Scholar 

  47. T. Kinoshita, J. Math. Phys. 3, 650 (1962)

    Article  ADS  MATH  Google Scholar 

  48. T.D. Lee, M. Nauenberg, Phys. Rev. 133, 1549 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  49. G. Ossola, C.G. Papadopoulos, R. Pittau, J. High Energy Phys. 0707, 085 (2007). arXiv:0704.1271 [hep-ph]

    Article  ADS  Google Scholar 

  50. T.D. Lee, C.-N. Yang, Phys. Rev. 128, 885 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. C. Grosse-Knetter, R. Kogerler, Phys. Rev. D48, 2865 (1993). arXiv:hep-ph/9212268

    MathSciNet  ADS  Google Scholar 

  52. M.V. Garzelli, I. Malamos, R. Pittau, J. High Energy Phys. 1101, 029 (2011). arXiv:1009.4302 [hep-ph]

    Article  ADS  Google Scholar 

  53. J.A.M. Vermaseren, arXiv:math-ph/0010025

  54. J.A.M. Vermaseren, Nucl. Phys. B, Proc. Suppl. 183, 19 (2008). arXiv:0806.4080 [hep-ph]

    Article  ADS  Google Scholar 

  55. J.A.M. Vermaseren, in Proc. of the 10th DESY Workshop on Elementary Particle Theory: Loops and Legs in Quantum Field Theory, Worlitz, Germany, April 25–30 (2010). arXiv:1006.4512 [hep-ph]

    Google Scholar 

  56. A. Denner, Fortschr. Phys. 41, 307 (1993). arXiv:0709.1075 [hep-ph]

    Google Scholar 

  57. F. del Aguila, R. Pittau, J. High Energy Phys. 0407, 017 (2004). arXiv:hep-ph/0404120

    Article  Google Scholar 

  58. T. Hahn, M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999). arXiv:hep-ph/9807565

    Article  ADS  Google Scholar 

  59. T. Hahn, Comput. Phys. Commun. 140, 418 (2001). arXiv:hep-ph/0012260, http://www.feynarts.de/

    Article  ADS  MATH  Google Scholar 

  60. Z. Bern, D. Kosower, Nucl. Phys. B 379, 451–561 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  61. D.Y. Bardin, G. Passarino, in The Standard Model in the Making: Precision Studies of the Electroweak Interactions (Clarendon, Oxford, 1999), pp. 493–494

    Google Scholar 

  62. M.V. Garzelli, I. Malamos, R. Pittau, J. High Energy Phys. 1001, 040 (2010). arXiv:0910.3130 [hep-ph]]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Garzelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garzelli, M.V., Malamos, I. R2SM: a package for the analytic computation of the R 2 Rational terms in the Standard Model of the Electroweak interactions. Eur. Phys. J. C 71, 1605 (2011). https://doi.org/10.1140/epjc/s10052-011-1605-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1605-6

Keywords

Navigation