Skip to main content
Log in

Orbital antiferroelectricity and higher dimensional magnetoelectric order in the spin-1/2 XX chain extended with three-spin interactions

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the spin-1/2 XX model extended with three-spin interactions of the XZX+YZY and \(XZY-YZX\) types. We solve the model exactly and obtain the ground state phase diagram as a function of the two three-spin coupling strengths. We show that even in absence of external electric and magnetic fields, there is a phase which exhibits spontaneous magnetoelectric order when both XZX+YZY and \(XZY-YZX\) interactions are present. Specifically, in this regime, we show that there exists not only a non-zero magnetization and a scalar chirality but also a vector chiral order. Further, we show the existence of a plaquette vector chirality, or circulating chiral spin current loops, in the plaquettes n, n+1, n+2 with the sense of the current being opposite in adjacent plaquettes. Analogous to charge current loops giving rise to orbital magnetic dipole moments, the circulating spin current loops give rise to orbital electric dipole moments—a novel orbital antiferroelectricity. We characterize this phase by a higher dimensional scalar and vector toroidal order. Such a novel phase with higher dimensional order arises because of the non-trivial topological connectivity resulting from the presence of both the three-spin interactions. We also study the combined effect of both types of three-spin interactions on the entanglement entropy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All exact mathematical expressions that are needed to reproduce our results have been provided in the manuscript text. The figures and conclusions follow from these expressions.]

References

  1. Y. Tokura, S. Seki, N. Nagaosa, Multiferroics of spin origin. Rep. Prog. Phys. 77(7), 076501 (2014)

    Article  ADS  Google Scholar 

  2. P. Curie, First consideration of an intrinsic correlation of magnetic and electric properties in a solid. J. de Physique (3rd series) 3, 393–415 (1894)

    Google Scholar 

  3. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38(8), 123 (2005)

    Article  ADS  Google Scholar 

  4. I. Fina, X. Marti, Electric control of antiferromagnets. IEEE Trans. Magn. 53(2), 1–7 (2017). https://doi.org/10.1109/TMAG.2016.2606561

    Article  Google Scholar 

  5. K. Noda, M. Akaki, F. Nakamura, D. Akahoshi, H. Kuwahara, Internal magnetic field effect on magnetoelectricity in orthorhombic RMnO\(_3\) crystals. J. Magn. Magn. Mater. 310(2, Part 2), 1162–1164 (2007). https://doi.org/10.1016/j.jmmm.2006.10.337. (Proceedings of the 17th International Conference on Magnetism)

    Article  ADS  Google Scholar 

  6. H.-J. Mikeska, A.K. Kolezhuk, One-dimensional magnetism, in Quantum Magnetism. ed. by U. Schollwöck, J. Richter, D.J.J. Farnell, R.F. Bishop (Springer, Berlin, 2004), pp.1–83. https://doi.org/10.1007/BFb0119591

    Chapter  Google Scholar 

  7. I. Dzyaloshinsky, A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4(4), 241–255 (1958). https://doi.org/10.1016/0022-3697(58)90076-3

    Article  ADS  Google Scholar 

  8. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960). https://doi.org/10.1103/PhysRev.120.91

    Article  ADS  Google Scholar 

  9. H. Katsura, N. Nagaosa, A.V. Balatsky, Spin Current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005). https://doi.org/10.1103/PhysRevLett.95.057205

    Article  ADS  Google Scholar 

  10. P. Thakur, P. Durganandini, Heisenberg spin-\(\frac{1}{2}\)\(\rm XXZ \) chain in the presence of electric and magnetic fields. Phys. Rev. B 97, 064413 (2018)

    Article  ADS  Google Scholar 

  11. P. Thakur, P. Durganandini, Factorization, coherence, and asymmetry in the Heisenberg spin-\(\frac{1}{2}\)\(\rm XXZ \) chain with Dzyaloshinskii-Moriya interaction in transverse magnetic field. Phys. Rev. B 102, 064409 (2020). https://doi.org/10.1103/PhysRevB.102.064409

    Article  ADS  Google Scholar 

  12. P. Thakur, P. Durganandini, Magnetic and electric order in the spin-1/2 XX model with three-spin interactions. AIP Conf. Proc. 1731(1), 130051 (2016). https://doi.org/10.1063/1.4948157

    Article  Google Scholar 

  13. P. Durganandini, Magnetoelectric effects in the spin-\(1/2\) XX chain with three spin interactions and Dzyaloshinskii-Moriya interaction. APS March Meeting Abstracts 2016, 6–008 (2016)

    Google Scholar 

  14. M. Suzuki, Equivalence of the two-dimensional Ising model to the ground state of the linear \(\rm XY \)-model. Phys. Lett. A 34(2), 94–95 (1971)

    Article  ADS  Google Scholar 

  15. M. Suzuki, Relationship among exactly soluble models of critical phenomena. i*)\(2\)D Ising model, dimer problem and the generalized \({\rm XY}\)-model. Progress Theoret. Phys. 46(5), 1337–1359 (1971). https://doi.org/10.1143/PTP.46.1337

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. R. Baxter, F. Wu, Exact solution of an Ising model with three-spin interactions on a triangular lattice. Phys. Rev. Lett. 31(21), 1294 (1973)

    Article  ADS  Google Scholar 

  17. K. Penson, R. Jullien, P. Pfeuty, Phase transitions in systems with multispin interactions. Phys. Rev. B 26(11), 6334 (1982)

    Article  ADS  Google Scholar 

  18. K. Penson, J. Debierre, L. Turban, Conformal invariance and critical behavior of a quantum Hamiltonian with three-spin coupling in a longitudinal field. Phys. Rev. B 37(13), 7884 (1988)

    Article  ADS  Google Scholar 

  19. D. Gottlieb, J. Rössler, Exact solution of a spin chain with binary and ternary interactions of dzialoshinsky-moriya type. Phys. Rev. B 60(13), 9232 (1999)

    Article  ADS  Google Scholar 

  20. I. Titvinidze, G.I. Japaridze, Phase diagram of the spin-\(1/2\) extended XY model. Eur. Phys. J. B-Condens. Matter Complex Syst. 32(3), 383–393 (2003)

    Article  Google Scholar 

  21. P. Lou, W.-C. Wu, M.-C. Chang, Quantum phase transition in spin-\(1/2\) XX Heisenberg chain with three-spin interaction. Phys. Rev. B 70(6), 064405 (2004)

    Article  ADS  Google Scholar 

  22. T. Krokhmalskii, O. Derzhko, J. Stolze, T. Verkholyak, Dynamic properties of the spin-\(\frac{1}{2}\) XY chain with three-site interactions. Phys. Rev. B 77, 174404 (2008). https://doi.org/10.1103/PhysRevB.77.174404

    Article  ADS  Google Scholar 

  23. M. Topilko, T. Krokhmalskii, O. Derzhko, V. Ohanyan, Magnetocaloric effect in spin-1/2 XX chains with three-spin interactions. Eur. Phys. J. B 85(8), 278 (2012)

    Article  ADS  Google Scholar 

  24. O. Menchyshyn, V. Ohanyan, T. Verkholyak, T. Krokhmalskii, O. Derzhko, Magnetism-driven ferroelectricity in spin-\(\frac{1}{2}\) XY chains. Phys. Rev. B 92, 184427 (2015)

    Article  ADS  Google Scholar 

  25. I. Lifshitz et al., Anomalies of electron characteristics of a metal in the high pressure region. Sov. Phys. JETP 11(5), 1130–1135 (1960)

    Google Scholar 

  26. T. Graß, C. Muschik, A. Celi, R.W. Chhajlany, M. Lewenstein, Synthetic magnetic fluxes and topological order in one-dimensional spin systems. Phys. Rev. A 91, 063612 (2015). https://doi.org/10.1103/PhysRevA.91.063612

    Article  ADS  Google Scholar 

  27. I. Peschel, Calculation of reduced density matrices from correlation functions. J. Phys. A: Math. Gen. 36(14), 205–208 (2003). https://doi.org/10.1088/0305-4470/36/14/101

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. B.-Q. Jin, V.E. Korepin, Quantum Spin Chain, Toeplitz Determinants and the Fisher-Hartwig Conjecture. J. Stat. Phys. 116, 79–95 (2004). https://doi.org/10.1023/B:JOSS.0000037230.37166.42

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M. Rodney, H.F. Song, S.-S. Lee, K. Le Hur, E.S. Sørensen, Scaling of entanglement entropy across Lifshitz transitions. Phys. Rev. B 87, 115132 (2013). https://doi.org/10.1103/PhysRevB.87.115132

    Article  ADS  Google Scholar 

  30. H. Frahm, Integrable spin-\(1/2\)\({XXZ}\) Heisenberg chain with competing interactions. J. Phys. A: Math. Gen. 25(6), 1417 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Grytsiuk, J.-P. Hanke, M. Hoffmann, J. Bouaziz, O. Gomonay, G. Bihlmayer, S. Lounis, Y. Mokrousov, S. Blügel, Topological-chiral magnetic interactions driven by emergent orbital magnetism. Nat. Commun. 11(1), 1–7 (2020)

    Article  Google Scholar 

  32. J.K. Pachos, M.B. Plenio, Three-spin interactions in optical lattices and criticality in cluster Hamiltonians. Phys. Rev. Lett. 93(5), 056402 (2004)

    Article  ADS  Google Scholar 

  33. S. Mankovsky, S. Polesya, H. Ebert, Extension of the standard Heisenberg Hamiltonian to multispin exchange interactions. Phys. Rev. B 101(17), 174401 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PT acknowledges his discussion with Hemlata Bhandari on entanglement entropy. PT thanks the University of Pune for doctoral stipend and the University Grants Commission, India, for awarding the Basic Scientific Research Fellowship 2015. PD thanks SERB, India, for financial support through research Grants MTR/2019/001411 and CRG/2019/003757.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this paper.

Corresponding author

Correspondence to P. Durganandini.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Durganandini, P. Orbital antiferroelectricity and higher dimensional magnetoelectric order in the spin-1/2 XX chain extended with three-spin interactions. Eur. Phys. J. B 96, 51 (2023). https://doi.org/10.1140/epjb/s10051-023-00522-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00522-1

Navigation