Skip to main content
Log in

Quantum cosmology with scalar fields: Self-adjointness and cosmological scenarios

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We discuss the issue of unitarity in particular quantum cosmological models with scalar fields. The time variable is recovered, in this context, by using the Schutz formalism for a radiative fluid. Two cases are considered: a phantom scalar field and an ordinary scalar field. For the first case, it is shown that the evolution is unitary provided a convenient factor ordering and inner product measure are chosen; the same happens for the ordinary scalar field, except for some special cases in which the Hamiltonian is not self-adjoint but admits a self-adjoint extension. In all cases, even in the cases not exhibiting a unitary evolution, a formal computation of the expectation value of the scale factor indicates a nonsingular bounce. The importance of unitary evolution in quantum cosmology is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. DeWitt, Phys. Rev. 160, 1113 (1967).

    Article  MATH  ADS  Google Scholar 

  2. C. W. Misner, Phys. Rev. 186, 1319 (1969).

    Article  MATH  ADS  Google Scholar 

  3. C. W. Misner, Phys. Rev. 186, 1328 (1969).

    Article  MATH  ADS  Google Scholar 

  4. N. Pinto-Neto, “Quantum cosmology,” in Cosmology and Gravitation, Ed. M. Novello (Editions Frontieres, Gif-sur-Yvette, 1996).

    Google Scholar 

  5. K. Kuchar, “Time and interpretation of quantum gravity,” in Proc. 4th Canadian Conference on General Relativity and Relativistic Astrophyscis (World Scientific, Singapore, 1992).

    Google Scholar 

  6. R. Colistete Jr., J. C. Fabris, and N. Pinto-Neto, Phys. Rev. D 57, 4707 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  7. B. F. Schutz, Phys. Rev. D 2, 2762 (1970).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. B. F. Schutz, Phys. Rev. D 4, 3559 (1971).

    Article  ADS  Google Scholar 

  9. V. G. Lapchinskii and V. A. Rubakov, Theor. Math. Phys. 33, 1076 (1977).

    Article  Google Scholar 

  10. F. Tipler, Phys. Rep. 137, 231 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Bojowald, Class. Quantum Grav. 29, 213001 (2012).

    Article  MathSciNet  ADS  Google Scholar 

  12. P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  13. N. Pinto-Neto and J. C. Fabris, Class. Quantum Grav. 30, 143001 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  14. F. G. Alvarenga, J. C. Fabris, N. A. Lemos, and G. A. Monerat, Gen. Rel. Grav. 34, 651 (2002).

    Article  Google Scholar 

  15. F. G. Alvarenga, A. B. Batista, J. C. Fabris, and S. V. B. Gonc¸ alves, Gen. Rel. Grav. 35, 1659 (2003).

    Article  MATH  ADS  Google Scholar 

  16. S. Pal and N. Banerjee, Phys. Rev. D 90, 104001 (2014).

    Article  ADS  Google Scholar 

  17. F. G. Alvarenga, A. B. Batista, and J. C. Fabris, Int. J.Mod. Phys. D 14, 291 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. J. C. Fabris, F. T. Falciano, J. Marto, N. Pinto-Neto, and P. Vargas Moniz, Braz. J. Phys. 42, 475 (2012).

    Article  ADS  Google Scholar 

  19. B. Vakili, Phys. Lett. B 718, 34 (2012).

    Article  ADS  Google Scholar 

  20. C. Brans and R. H. Dicke, Phys.Rev. 124, 925 (1961).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. J. E. Lidsey, D. Wands, and E. J. Copeland, Phys. Rep. 337, 343 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  22. E. Alvarez and J. Conde, Mod. Phys. Lett. A 17, 413 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic Press, San Diego, 2007).

    Google Scholar 

  24. M. Reed and B. Simon, Methods of ModernMathematical Physics (Academic Press, New York, 1975), Vol. 2.

  25. A. M. Essin and D. J. Griffiths, Am. J. Phys. 74, 109 (2006).

    Article  ADS  Google Scholar 

  26. R. Colistete Jr., J. C. Fabris, and N. Pinto-Neto, Phys. Rev. D 57, 4707 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  27. J. C. Fabris, N. Pinto-Neto, and A. Velasco, Class. Quantum Grav. 16, 3807 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla R. Almeida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, C.R., Batista, A.B., Fabris, J.C. et al. Quantum cosmology with scalar fields: Self-adjointness and cosmological scenarios. Gravit. Cosmol. 21, 191–199 (2015). https://doi.org/10.1134/S0202289315030020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289315030020

Keywords

Navigation