Skip to main content
Log in

Periodic Orbits for a Fifth-Order Generalized Hénon–Heiles Hamiltonian System

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the periodic orbits of the Hamiltonian system with a fifth-order generalized Hénon–Heiles potential and its \({\mathcal{C}}^{1}\) non-integrability in the sense of Liouville–Arnold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. M. Alvarez-Ramírez, J. D. García-Saldaña, and M. Medina, ‘‘Periodic orbits in a three-dimensional galactic potential model via averaging theory,’’ Eur. Phys. J. Plus 135, 787 (2020).

    Article  Google Scholar 

  2. M. Alvarez-Ramírez and J. D. García-Saldaña, ‘‘Periodic orbits of a generalized Hénon Heiles system,’’ J. Phys. A: Math. Theor. 53, 065204 (2020).

    Article  Google Scholar 

  3. A. Buică and J. Llibre, ‘‘Averaging methods for finding periodic orbits via Brouwer degree,’’ Bull. Sci. Math. 128, 7–22 (2004).

    Article  MathSciNet  Google Scholar 

  4. F. L. Dubeibe, D. A. Riaño, and E. E. Zotos, ‘‘Dynamical analysis of bounded and unbounded orbits in a generalized Hénon–Heiles system,’’ Phys. Lett. A 382, 904–910 (2018).

    Article  MathSciNet  Google Scholar 

  5. F. L. Dubeibe, E. E. Zotos, and W. Chen, ‘‘On the dynamics of a seventh-order generalized Hénon–Heiles potential,’’ Results Phys. 18, 103278 (2020).

    Article  Google Scholar 

  6. F. L. Dubeibe, A. Riaño-Doncel, and E. E. Zotos, ‘‘Dynamical analysis of bounded and unbounded orbits in a generalized Hénon-Heiles system,’’ Phys. Lett. A 382, 904–910 (2018).

    Article  MathSciNet  Google Scholar 

  7. A. A. Elmandouh, ‘‘On the dynamics of Armbruster Guckenheimer Kim galactic potential in a rotating reference frame,’’ Astrophys Space Sci. 361 (6), 182 (2016).

    Article  MathSciNet  Google Scholar 

  8. A. A. Elmandouh, ‘‘Non-integrability, stability and periodic solutions for a quartic galactic potential in a rotating reference frame,’’ Astrophys. Space Sci. 365 (7), 115 (2020).

    Article  MathSciNet  Google Scholar 

  9. M. Hénon and C. Heiles, ‘‘The applicability of the third integral of motion: Some numerical experiments,’’ Astron. J. 69, 73–79 (1964).

    Article  MathSciNet  Google Scholar 

  10. V. Lanchares, A. I. Pascual, M. Iñarrea, J. P. Salas, J. F. Palacián, and P. Yanguas, ‘‘Reeb’s theorem and periodic orbits for a rotating Hénon–Heiles potential,’’ J. Dyn. Differ. Equat. 33, 445–461 (2021).

    Article  Google Scholar 

  11. J. Llibre and C. Valls, ‘‘Periodic orbits for a generalized Hénon–Heiles Hamiltonian system with an additional singular gravitational term,’’ Eur. Phys. Lett. 134, 60005 (2021).

    Article  Google Scholar 

  12. J. Llibre, T. Saeed, and E. E. Zotos, ‘‘Periodic orbits and equilibria for a seventh order generalized Hénon–Heiles Hamiltonian system,’’ J. Geom. Phys. 167, 104290 (2021).

    Article  Google Scholar 

  13. J. Llibre and L. Jiménez-Lara, ‘‘Periodic orbits and non-integrability of Hénon–Heiles systems,’’ J. Phys. A 44, 205103 (2011).

    Article  MathSciNet  Google Scholar 

  14. K. Meyer and D. C. Offin, Introduction to Hamiltonian Dynamical Systems and the \(N\) -Body Problem, Vol. 90 of Applied Mathematical Sciences, 3rd ed. (Springer, Berlin, 2017).

  15. R. C. Churchill, G. Pecelli, and D. L. Rod, ‘‘A survey of the Hénon–Heiles Hamiltonian with applications to related examples,’’ in Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Proceedings of the Volta Memorial Conference, Como, 1977, Lect. Notes Phys. 93, 76–136 (1979).

  16. E. E. Zotos, W. Chen, J. F. Navarro and T. Saeed, ‘‘A new formulation of a Hénon–Heiles potential with additional singular gravitational terms,’’ Int. J. Bifurc. Chaos Appl. Sci. Eng. 30, 2050197 (2020).

    Article  Google Scholar 

Download references

Funding

M. Alvarez-Ramírez was partially supported by the grant Sistemas Hamiltonianos, Mecánica y Geometría from the PAPDI2021 CBI-UAMI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Alvarez-Ramírez, J. Lino Cornelio or M. Medina.

Additional information

(Submitted by M. A.Malakhaltsev)

AVERAGING THEORY OF SECOND ORDER

AVERAGING THEORY OF SECOND ORDER

Based on the averaging theory of first, second and third order, whose key point is the Brouwer degree technique, Buică and Llibre [3] provided a way to find periodic solutions for a differential system whose vector field depends on a small parameter \(\varepsilon\). Next, we give a brief description of their results.

Theorem 5 (Second order averaging theory). Consider the differential system

$$\dot{x}(t)=\varepsilon F_{1}(t,x)+\varepsilon^{2}F_{2}(t,x)+\varepsilon^{3}R(t,x,\varepsilon),$$
(A1)

where \(F_{1}\), \(F_{2}:\mathbb{R}\times D\to\mathbb{R}^{n}\), \(R:\mathbb{R}\times D\times(-\varepsilon_{f},\varepsilon_{f})\to\mathbb{R}^{n}\) are continuous functions, \(T\)-periodic in \(t\), and \(D\) is an open subset of \(\mathbb{R}^{n}\). Assume that

  • \((i)\) \(F_{1}(t,\cdot)\in\mathcal{C}^{1}(D)\) for all \(t\in\mathbb{R}\) , \(F_{1}\) , \(F_{2}\) , \(R\) and \(D_{x}F_{1}\) are locally Lipschitz with respect to \(x\) , and \(R\) is differentiable with respect to \(\varepsilon\) . We define \(f_{1},\,f_{2}:D\to\mathbb{R}^{n}\) as

    $$f_{1}(z)=\frac{1}{T}\int\limits_{0}^{T}F_{1}(s,z)ds,$$
    $$f_{2}(z)=\frac{1}{T}\int\limits_{0}^{T}\left[D_{z}F_{1}(s,z)\cdot\int\limits_{0}^{s}F_{1}(t,z)dt+F_{2}(s,z)\right]ds,$$

    and

  • \((ii)\) for \(V\subset D\) an open and bounded set and for each \(\varepsilon\in(-\varepsilon_{f},\varepsilon_{f})\setminus\{0\}\), there exist \(a_{\varepsilon}\in V\) such that \(f_{1}(a_{\varepsilon})+\varepsilon f_{2}(a_{\varepsilon})=0\) and \(d_{B}(f_{1}+\varepsilon f_{2},V,0)\neq 0\).

Then, for \(|\varepsilon|>0\) sufficiently small, there exist a \(T\)–periodic solution \(\varphi(\cdot,\varepsilon)\) of system (A1) such that \(\varphi(0,\varepsilon)=a_{\varepsilon}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Ramírez, M., Cornelio, J.L. & Medina, M. Periodic Orbits for a Fifth-Order Generalized Hénon–Heiles Hamiltonian System. Lobachevskii J Math 43, 1–9 (2022). https://doi.org/10.1134/S1995080222040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222040023

Keywords:

Navigation