Skip to main content
Log in

Controlling the One-Dimensional Motion of Hybrid Vibrational Rod Systems

  • Control in Deterministic Systems
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

A mathematical model of the one-dimensional controlled motion of a hybrid vibrational system is proposed. The plant includes an inhomogeneous elastic rod with loads concentrated at its endpoints. An analytical-numerical procedure for finding the eigenvalues (eigenfrequencies) and eigenfunctions is developed. A novel procedure to take into account the nonuniform distributed forces and forces concentrated at the endpoints using a modification of Grinberg’s approach is presented. Efficient statements and constructive approximate solutions of the problems for controlling the motion of a countably dimensional vibrational system with a complex distribution of eigenfrequencies are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Akulenko, S. S. Krylov, Yu. G. Markov, Tun Tun Win, and A. S. Filippova, “Dynamics of spacecraft with elastic and dissipative elements in the attitude control mode,” J. Comput. Syst. Sci. Int. 53, 723 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. K. Andreichenko, K. P. Andreichenko, and V. V. Kononov, “On the stability of the angular stabilization system of the rotating rod under longitudinal acceleration,” J. Comput. Syst. Sci. Int. 52, 686 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu. F. Golubev and A. E. Ditkovskii, “Rotation control for an elastic rod on a plane without generating elastic oscillations,” J. Comput. Syst. Sci. Int. 40, 155 (2001).

    MATH  Google Scholar 

  4. Yu. F. Golubev and A. E. Ditkovskii, “Controlled motion of an elastic manipulator,” J. Comput. Syst. Sci. Int. 40, 1004 (2001).

    MATH  Google Scholar 

  5. L. V. Gannel and A. M. Formal’skii, “Control for minimizing vibrations in systems with compliant elements,” J. Comput. Syst. Sci. Int. 52, 117 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. d’Andréa-Novel and J. M. Coron, “Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach,” Automatica 36, 587–593 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. W. He, S. Zhang, and S. S. Ge, “Adaptive control of a flexible crane system with the boundary output constraint,” IEEE Trans. Ind. Electron. 61, 4126–4133 (2014).

    Article  Google Scholar 

  8. L. D. Akulenko, “Quasistationary finite-interval control of the motion of hybrid oscillatory systems,” PMM J. Appl. Math. Mech. 55, 145–152 (1991).

    Article  MATH  Google Scholar 

  9. L. D. Akulenko, A. A. Gavrikov, and S. V. Nesterov, “The synthesis of an inhomogeneous elastic system with a boundary load,” Moscow Univ. Mech. Bull. 72, 113 (2017).

    Article  MATH  Google Scholar 

  10. S. P. Timoshenko, Oscillations in Engineering (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

  11. V. A. Steklov, Basic Problems of Mathematical Physics (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  12. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  13. L. D. Akulenko, S. K. Kaushinis, and G. V. Kostin, “Effect of dry friction on the control of electromechanical systems motion,” Izv. Akad. Nauk, Tekh. Kibernet., No. 1, 65–74 (1994).

    Google Scholar 

  14. A. G. Butkovskii, Distributed Control Systems (Elsevier, New York, 1969; Nauka, Moscow, 1975).

    Google Scholar 

  15. J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Vol. 170 of Grundlehren der mathematischen Wissenschaften (Springer, Berlin, Heidelberg, 1971).

    Book  MATH  Google Scholar 

  16. F. L. Chernousko, I. M. Ananievski, and S. A. Reshmin, Control of Nonlinear Dynamical Systems. Methods and Applications (Springer, Berlin, 2008).

    Book  MATH  Google Scholar 

  17. L. D. Akulenko, “Reduction of an elastic system to a prescribed state by use of a boundary force,” PMM J. Appl. Math. Mech. 45, 827–833 (1981).

    Article  MATH  Google Scholar 

  18. L. D. Akulenko, “Optimal control of simple motions of homogeneous elastic body,” Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 200–207 (1992).

    Google Scholar 

  19. L. D. Akulenko, “Constructive contol of the motion of oscillating systems with discrete and distributed parameters,” PMM J. Appl. Math. Mech. 53, 464–473 (1989).

    Article  MATH  Google Scholar 

  20. L. D. Akulenko and S. A. Kumakshev, “Implementation of the desired state of motion for a vessel with heavy liquid,” Dokl. Phys. 62, 180 (2017).

    Article  Google Scholar 

  21. J. Walter, “Regular Eigenvalue problems with Eigenvalue parameter in the boundary condition,” Math. Z. 133, 301–312 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  22. L. D. Akulenko and S. V. Nesterov, High-Precision Methods in Eigenvalue Problems and Their Applications (Chapman and Hall, CRC, Boca Raton, FL, 2005).

    MATH  Google Scholar 

  23. G. A. Grinberg, “A new method for solving certain boundary value problems for the equations of mathematical physics, permitting separation of variables,” Izv. Akad. Nauk SSSR, Ser. Fiz. 10, 141–168 (1946).

    Google Scholar 

  24. E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems (Springer, New York, 1998).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gavrikov.

Additional information

Original Russian Text © L.D. Akulenko, A.A. Gavrikov, 2018, published in Izvestiya Akademii Nauk, Teoriya i Sistemy Upravleniya, 2018, No. 3, pp. 5–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akulenko, L.D., Gavrikov, A.A. Controlling the One-Dimensional Motion of Hybrid Vibrational Rod Systems. J. Comput. Syst. Sci. Int. 57, 349–357 (2018). https://doi.org/10.1134/S1064230718020028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230718020028

Navigation