Skip to main content
Log in

Differential-Difference Equations with Optimal Parameters

  • ORDINARY DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The paper considers difference schemes with optimal parameters for solving Maxwell’s equations. Using Laguerre transforms, the numerical values of the optimal parameters are determined and differential-difference equations are constructed. Differential-difference equations are solved by the finite-difference method with iterations over small optimal parameters. Optimal second-order difference schemes for one-dimensional and two-dimensional Maxwell’s equations are considered. Optimal parameters of difference schemes are given. It is shown that the use of optimal difference schemes leads to an increase in the accuracy of solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. R. Luebbers and F. P. Hansberger, “FDTD for Nth-order dispersive media,” IEEE Trans. Antennas Propag. 40, 1297–1301 (1992).

    Article  Google Scholar 

  2. G. Turner and A. F. Siggins, “Constant Q attenuation of subsurface radar pulses,” Geophysics 59, 1192–1200 (1994).

    Article  Google Scholar 

  3. T. Bergmann, J. O. A. Robertsson, and K. Holliger, “Finite difference modeling of electromagnetic wave in dispersive and attenuating media,” Geophysics 63, 856–867 (1998).

    Article  Google Scholar 

  4. T. Bergmann, J. O. Blanch, J. O. A. Robertsson, and K. Holliger, “A simplified Lax–Wendroff correction for staggered-grid FDTD modeling of electromagnetic wave in frequency-dependent media,” Geophysics 64, 1369–1377 (1999).

    Article  Google Scholar 

  5. Electrical Prospecting: Geophysicist’s Manual, Ed. by A. G. Tarkhov (Nedra, Moscow, 1980) [in Russian].

    Google Scholar 

  6. G. H. Golub and C. F. van Loan, Matrix Computations, 3rd. ed. (Johns Hopkins Univ. Press, Baltimore, Md., 1996).

    Google Scholar 

  7. A. S. Kholodov, “Numerical methods for solving hyperbolic equations and systems,” in Encyclopedia of Low-Temperature Plasmas (Yanus-K, Moscow, 2008), Vol. VII-1, Part 2, pp. 141–174 [in Russian].

    Google Scholar 

  8. A. I. Tolstykh, Compact Finite Difference Schemes and Their Application in Aerodynamic Problems (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  9. B. V. Rogov and M. N. Mikhailovskaya, “Fourth-order accurate bicompact schemes for hyperbolic equations,” Dokl. Math. 81 (1), 146–150 (2010).

    Article  MathSciNet  Google Scholar 

  10. C. K. Tam and J. C. Webb, “Dispersion-relation-preserving finite difference schemes for computational acoustics,” J. Comput. Phys. 107 (2), 262–281 (1993).

    Article  MathSciNet  Google Scholar 

  11. C. H. Jo, C. Shin, and H. S. Suh, “An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator,” Geophysics 61, 529–537 (1996).

    Article  Google Scholar 

  12. J. B. Chen, “An average derivative optimal scheme for frequency-domain scalar wave equation,” Geophysics 77, T201–T210 (2012).

    Article  Google Scholar 

  13. A. F. Mastryukov and B. G. Mikhailenko, “Optimal finite difference schemes for Maxwell’s equations in direct problems of electromagnetic sounding,” Geol. Geofiz. 56 (9), 1713–1722 (2015).

    Google Scholar 

  14. A. F. Mastryukov, “Optimal finite difference schemes for a wave equation,” Numer. Anal. Appl. 9 (4), 299–311 (2016).

    Article  MathSciNet  Google Scholar 

  15. A. F. Mastryukov, “Difference schemes based on the Laguerre transform,” Comput. Math. Math. Phys. 61 (3), 351–358 (2021).

    Article  MathSciNet  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth-Heinemann, Oxford, 1984).

  17. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972).

    Google Scholar 

  18. M. Ghris, B. Fornberg, and T. A. Driscoll, “Staggered time integrator for wave equations,” SIAM J. Numer. Anal. 38, 718–741 (2000).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Mastryukov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastryukov, A.F. Differential-Difference Equations with Optimal Parameters. Comput. Math. and Math. Phys. 63, 2060–2068 (2023). https://doi.org/10.1134/S0965542523110155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523110155

Keywords:

Navigation