Skip to main content
Log in

Symbolic-Numerical Modeling of the Propagation of Adiabatic Waveguide Mode in a Smooth Waveguide Transition

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this work, the model of adiabatic waveguide modes is studied by means of computer algebra. Within the model, the solution of the system of Maxwell’s equations is reduced to a form expressed via the solution of a system of four ordinary differential equations and two algebraic equations for six components of the electromagnetic field. In the case of multilayer waveguides, by means of a computer algebra system, the equations are reduced to a homogeneous system of linear algebraic equations, which is studied symbolically. The condition for non-trivial solvability of the system defines a dispersion relation, which is solved by the symbolic-numerical method, while the system is solved symbolically. The paper presents solutions that describe adiabatic waveguide modes in the zeroth approximation, taking into account the small slope of the interface of the waveguide layer, which are qualitatively different from solutions that do not take into account this slope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. A. F. Stevenson, “General theory of electromagnetic horns,” J. Appl. Phys. 22 (12), 1447 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. A. Schelkunoff, “Conversion of Maxwell’s equations into generalized telegraphist’s equations,” Bell Syst. Tech. J. 34, 995–1043 (1955).

    Article  MathSciNet  Google Scholar 

  3. B. Z. Katsenelenbaum, Theory of Irregular Waveguides with Slowly Varying Parameters (Akad. Nauk SSSR, Moscow, 1961) [in Russian].

    Google Scholar 

  4. B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. Eng. Technol., London, 1998).

    Book  MATH  Google Scholar 

  5. V. V. Shevchenko, Continuous Transitions in Open Waveguides (Nauka, Moscow, 1969; Golem, Boulder, Colo., 1971).

  6. A. G. Sveshnikov, “Approximate method for calculation of a weakly irregular waveguide,” Dokl. Akad. Nauk SSSR 80 (3), 345–347 (1956).

    Google Scholar 

  7. A. G. Sveshnikov, “The basis for a method of calculating irregular waveguides,” USSR Comput. Math. Math. Phys. 3 (1), 219–232 (1963).

    Article  Google Scholar 

  8. M. V. Fedoryuk, “A justification of the method of transverse sections for an acoustic wave guide with nonhomogeneous content,” USSR Comput. Math. Math. Phys. 13 (1), 162–173 (1973).

    Article  MathSciNet  Google Scholar 

  9. A. A. Ivanov and V. V. Shevchenko, “A planar transversal junction of two planar waveguides,” J. Commun. Technol. Electron. 54, 63–72 (2009).

    Article  Google Scholar 

  10. L. A. Sevastianov and A. A. Egorov, “Theoretical analysis of the waveguide propagation of electromagnetic waves in dielectric smoothly irregular integrated structures,” Opt. Spectrosc. 105 (4), 576–584 (2008).

    Article  Google Scholar 

  11. A. A. Egorov and L. A. Sevastianov, “Structure of modes of a smoothly irregular integrated optical four-layer three-dimensional waveguide,” Quantum Electron. 39 (6), 566–574 (2009).

    Article  Google Scholar 

  12. A. A. Egorov, K. P. Lovetskiy, A. L. Sevastianov, and L. A. Sevastianov, “Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation,” Quantum Electron. 40 (9), 830–836 (2010).

    Article  Google Scholar 

  13. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wavelength Diffraction Theory (Nauka, Moscow, 1972; Alpha Science, Oxford, UK, 2008).

  14. D. V. Divakov and A. L. Sevastianov, “The implementation of the symbolic-numerical method for finding the adiabatic waveguide modes of integrated optical waveguides in CAS Maple,” Lect. Notes Comput. Sci. 11661, 107–121 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  15. D. V. Divakov and A. A. Tyutyunnik, “Symbolic investigation of the spectral characteristics of guided modes in smoothly irregular waveguides,” Program. Comput. Software 48 (2), 80–89 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. J. Adams, An Introduction to Optical Waveguides (Wiley, New York, 1981).

    Google Scholar 

  17. Maple homepage. https://www.maplesoft.com. Accessed May 24, 2022.

  18. M. Gevorkyan, D. Kulyabov, K. Lovetskiy, L. Sevastianov, and A. Sevastianov, “Field calculation for the horn waveguide transition in the single-mode approximation of the cross-sections method,” Proc. SPIE 10337, 103370H (2017).

  19. D. V. Divakov, K. P. Lovetskiy, L. A. Sevastianov, and A. A. Tiutiunnik, “A single-mode model of cross-sectional method in a smoothly irregular transition between planar thin-film dielectric waveguides,” Proc. SPIE, 11846, 118460T (2021).

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-11-20257).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Divakov or A. A. Tyutyunnik.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divakov, D.V., Tyutyunnik, A.A. Symbolic-Numerical Modeling of the Propagation of Adiabatic Waveguide Mode in a Smooth Waveguide Transition. Comput. Math. and Math. Phys. 63, 96–105 (2023). https://doi.org/10.1134/S0965542523010074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523010074

Keywords:

Navigation