Skip to main content
Log in

The impact of the Wiener process on solutions of the potential Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the \((3+1)\)-dimensional stochastic potential Yu–Toda–Sasa–Fukuyama equation (SPYTSFE) forced in the Itô sense by a multiplicative Wiener process. To obtain trigonometric, hyperbolic, and rational SPYTSFE solutions, we use the Riccati–Bernoulli sub-ODE and He’s semiinverse methods. The SPYTSFE may explain many exciting physical phenomena because it relates to nonlinear waves and solitons in dispersive media, plasma physics, and fluid dynamics. We show how the Wiener process affects the exact SPYTSFE solutions by introducing several 2D and 3D graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. M. Wang, X. Li, and J. Zhang, “The \(\bigl(\frac{G'}{G}\bigr)\)-expansion method and evolution equation in mathematical physics,” Phys. Lett. A, 372, 417–423 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Zhang, “New application of the \(\bigl(\frac{G'}{G}\bigr)\)-expansion method,” Commun. Nonlinear Sci. Numer. Simul., 14, 3220–3225 (2009).

    Article  ADS  Google Scholar 

  3. Z. Yan, “Abundant families of Jacobi elliptic function solutions of the (\(2+1\))-dimensional integrable Davey–Stewartson-type equation via a new method,” Chaos Solitons Fractals, 18, 299–309 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. Albosaily, W. W. Mohammed, A. E. Hamza, M. El-Morshedy, and H. Ahmad, “The exact solutions of the stochastic fractional-space Allen–Cahn equation,” Open Phys., 20, 23–29 (2022).

    Article  Google Scholar 

  5. W. Malfliet and W. Hereman, “The tanh method. I. Exact solutions of nonlinear evolution and wave equations,” Phys. Scripta, 54, 563–568 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. F. M. Al-Askar, C. Cesarano, and W. W. Mohammed, “Multiplicative Brownian motion stabilizes the exact stochastic solutions of the Davey–Stewartson equations,” Symmetry, 14, 2176, 12 pp. (2022).

    Article  ADS  Google Scholar 

  7. K. Khan and M. A. Akbar, “The \(\exp(-\Phi(\xi))\)-expansion method for finding travelling wave solutions of Vakhnenko–Parkes equation,” Internat. J. Dyn. Syst. Differ. Equ., 5, 72–83 (2014).

    MathSciNet  MATH  Google Scholar 

  8. X.-F. Yang, Z.-C. Deng, and Y. Wei, “A Riccati–Bernoulli sub-ODE method for nonlinear partial differential equations and its application,” Adv. Difference Equ., 2015, 117, 17 pp. (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. W. W. Mohammed and N. Iqbal, “Impact of the same degenerate additive noise on a coupled system of fractional space diffusion equations,” Fractals, 30, 2240033, 14 pp. (2022).

    Article  ADS  MATH  Google Scholar 

  10. W. W. Mohammed and C. Cesarano, “The soliton solutions for the (\(4+1\))-dimensional stochastic Fokas equation,” Math. Methods Appl. Sci., 46, 7589–7597 (2022).

    Article  MathSciNet  Google Scholar 

  11. X. Yang, C. Zhao, and J. Cao, “Dynamics of the discrete coupled nonlinear Schrödinger– Boussinesq equations,” Appl. Math. Comput., 219, 8508–8524 (2013).

    MathSciNet  MATH  Google Scholar 

  12. R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons,” Phys. Rev. Lett., 27, 1192–1194 (1971).

    Article  ADS  MATH  Google Scholar 

  13. W. W. Mohammed, “Stochastic amplitude equation for the stochastic generalized Swift– Hohenberg equation,” J. Egyptian Math. Soc., 23, 482–489 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Imkeller and A. H. Monahan, “Conceptual stochastic climate models,” Stoch. Dynam., 2, 311–326 (2002).

    Article  MATH  Google Scholar 

  15. F. M. Al-Askar, W. W. Mohammed, E. S. Aly, and M. EL-Morshedy, “Exact solutions of the stochastic Maccari system forced by multiplicative noise,” ZAMM J. Appl. Math. Mech., 103, e202100199, 12 pp. (2023).

    Article  MathSciNet  Google Scholar 

  16. W. W. Mohammed, F. M. Al-Askar, and C. Cesarano, “The analytical solutions of the stochastic mKdV equation via the mapping method,” Mathematics, 10, 4212, 9 pp. (2022).

    Article  Google Scholar 

  17. F. M. Al-Askar and W. W. Mohammed, “The analytical solutions of the stochastic fractional RKL equation via Jacobi elliptic function method,” Adv. Math. Phys., 2022, 1534067, 8 pp. (2022).

    Article  MathSciNet  MATH  Google Scholar 

  18. F. M. Al-Askar, C. Cesarano, and W. W. Mohammed, “The influence of white noise and the beta derivative on the solutions of the BBM equation,” Axioms, 12, 447, 12 pp. (2023).

    Article  Google Scholar 

  19. S.-J. Yu, K. Toda, N. Sasa, and T. Fukuyama, “\(N\) soliton solutions to the Bogoyavlenskii–Schiff equation and a quest for the soliton solution in (\(3+1\)) dimensions,” J. Phys. A: Math. Gen., 31, 3337–3347 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Z. Yan, “New families of nontravelling wave solutions to a new \((3+1)\)-dimensional potential-YTSF equation,” Phys. Lett. A, 318, 78–83 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. H.-M. Yin, B. Tian, J. Chai, X.-Y. Wu, and W.-R. Sun, “Solitons and bilinear Bäcklund transformations for a \((3+1)\)-dimensional Yu– Toda– Sasa– Fukuyama equation in a liquid or lattice,” Appl. Math. Lett., 58, 178–183 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. J. Hu, H. L. Chen, and Z. D. Dai, “New kink multi-soliton solutions for the \((3+1)\)-dimensional potential-Yu–Toda–Sasa–Fukuyama equation,” Appl. Math. Comput., 234, 548–556 (2014).

    MathSciNet  MATH  Google Scholar 

  23. W. Tan and Z. D. Dai, “Dynamics of kinky wave for \((3+1)\)-dimensional potential Yu– Toda– Sasa– Fukuyama equation,” Nonlinear Dyn., 85, 817–823 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  24. A.-M. Wazwaz, “Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo– Miwa and YTSF equations,” Appl. Math. Comput., 203, 592–597 (2008).

    MathSciNet  MATH  Google Scholar 

  25. T. Fang and Y.-H. Wang, “Lump-stripe interaction solutions to the potential Yu– Toda– Sasa– Fukuyama equation,” Anal. Math. Phys., 9, 1481–1495 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  26. T.-X. Zhang, H.-N. Xuan, D.-F. Zhang, and C.-J. Wang, “Non-travelling wave solutions to a \((3+1)\)-dimensional potential-YTSF equation and a simplified model for reacting mixtures,” Chaos Solitons Fractals, 34, 1006–1013 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. S. Zhang and H.-Q. Zhang, “A transformed rational function method for \((3+1)\)-dimensional potential Yu–Toda–Sasa–Fukuyama equation,” Pramana J. Phys., 76, 561–571 (2011).

    Article  ADS  Google Scholar 

  28. H.-O. Roshid, M. A. Akbar, M. N. Alam, M. F. Hoque, and N. Rahman, “New extended \((G'/G)\)- expansion method to solve nonlinear evolution equation: The \((3+1)\)-dimensional potential-YTSF equation,” SpringerPlus, 3, 122, 6 pp. (2014).

    Article  Google Scholar 

  29. F. M. Al-Askar, C. Cesarano, and W. W. Mohammed, “Abundant solitary wave solutions for the Boiti–Leon–Manna–Pempinelli equation with M-truncated derivative,” Axioms, 12, 466, 10 pp. (2023).

    Article  Google Scholar 

  30. J.-H. He, “Variational principles for some nonlinear partial differential equations with variable coefficients,” Chaos Solitons Fractals, 19, 847–851 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” Internat. J. Modern Phys. B, 20, 1141–1199 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Y.-H. Ye and L.-F. Mo, “He’s variational method for the Benjamin–Bona–Mahony equation and the Kawahara equation,” Comput. Math. Appl., 58, 2420–2422 (2009).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research was supported by the Princess Nourah bint Abdulrahman University Researcher Supporting Project number PNURSP2023R 273, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Al-Askar.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 217, pp. 348–357 https://doi.org/10.4213/tmf10503.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Askar, F.M. The impact of the Wiener process on solutions of the potential Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid. Theor Math Phys 217, 1717–1725 (2023). https://doi.org/10.1134/S0040577923110077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923110077

Keywords

Navigation