Skip to main content
Log in

Hydrodynamic Mechanisms of the Influence of an Elastic Constraint on the Propulsive Force of Airfoil under Semideterministic Oscillations in Viscous Fluid Flow

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The results of investigation of oscillations of an airfoil on an elastic hinge that performs transverse sinusoidal oscillations in the free stream of a viscous incompressible fluid are given. The motion of the hinge is specified and the angular oscillations of the airfoil occur under the action of hydrodynamic and elastic forces. The problem of fluid-structure interaction is solved in the complete coupled formulation. Fluid is described by the Navier–Stokes equations whose numerical solution is constructed using the meshless method of viscous vortex domains. Simulation of the related motion of the continuous medium and the rigid body is reached by solving the united linear system of equations in which the unknowns are the vorticity fluxes from the body surface and the velocity of rotational motion of the body. As a result, all unknown quantities are calculated simultaneously in each time step omitting the traditional procedure of splitting the step into the hydrodynamic and dynamic parts with subsequent iterations. The mechanisms underlying the thrust in such motion of airfoil and the role of the added mass force in this process are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. https://github.com/vvflow/vvflow/

REFERENCES

  1. Knoller, R., Die Gesetze des Luftwiderstandes, Flug- und Motortechnik (Wien), 1909, vol. 3, no. 21, pp. 1–7.

  2. Betz, A., Ein Beitrag zur Erklarung des Segel uges, Zeitschrift fur Flugtechnik und Motorluftschiffahrt, 1912, vol. 3, no. 1, pp. 269–272.

    Google Scholar 

  3. Jones, K.D., Dohring, C.M., and Platzer, M.F., Experimental and computational investigation of the Knoller–Betz effect, AIAA J., 1998, vol. 36, no. 7. https://doi.org/10.2514/2.505

  4. Platzer, M.F. and Jones, K.D., Flapping-wing aerodynamics: progress and challenges, AIAA J., 2008, vol. 46, no. 9. https://doi.org/10.2514/1.29263

  5. Xiao, Q. and Zhu, Q., A review on flow energy harvesters based on flapping foils, J. Fluids Struct., 2014, vol. 46, pp. 174–191. https://doi.org/10.1016/j.jfluidstructs.2014.01.002

    Article  ADS  Google Scholar 

  6. Wu, X., Zhang, X., Tian, X., Li, X., and Lu, W., A review on fluid dynamics of flapping foils, Ocean Eng., 2020, vol. 195, p. 106712. https://doi.org/10.1016/j.oceaneng.2019.106712

  7. Brousseau, P., Benaouicha, M., and Guillou, S., Dynamics of a free heaving and prescribed pitching hydrofoil in a turbulent flow, with a fluid-structure interaction approach, in: Proceedings of the ASME 2018 Pressure Vessels and Piping Conference, Prague, Czech Republic, 15–19 July 2018, p. 9.

  8. Marais, C., Thiria, B., Wesfreid, J.E., and Godoy-Diana, R., Stabilizing effect of flexibility in the wake of a flapping foil, J. Fluid Mech., 2012, vol. 710, pp. 659–669.

    Article  ADS  Google Scholar 

  9. Zeyghami, S., Zhong, Q., Liu, G., and Dong, H., Passive pitching of a flapping wing in turning flight, AIAA J., vol. 57, no. 1, pp. 1–9. https://doi.org/10.2514/1.J056622

  10. Brousseau, P., Benaouicha, M., and Guillou, S., Hydrodynamic efficiency analysis of a flexible hydrofoil oscillating in a moderate Reynolds number fluid flow, Energies, 2021, vol. 14, p. 4370. https://doi.org/10.3390/en14144370

    Article  Google Scholar 

  11. Guojun Li, Gaël Kemp, Rajeev Kumar Jaiman, and Boo Cheong Khoo, A high-fidelity numerical study on the propulsive performance of pitching flexible plates editors-pick, Phys. Fluids, 2021, vol. 33, p. 051901. https://doi.org/10.1063/5.0049217

  12. Kui Liu, Xuechao Liu, and Haibo Huang, Scaling the self-propulsive performance of pitching and heaving flexible plates, J. Fluid Mech., 2022, vol. 936. https://doi.org/10.1017/jfm.2022.52

  13. Zhang, C., Huang, H., and Lu, X.-Y., Effect of trailing-edge shape on the self-propulsive performance of heaving flexible plates, J. Fluid Mech., 2020, vol. 887, no. A7. https://doi.org/10.1017/jfm.2019.1076

  14. Guvernyuk, S.V., Dynnikov, Ya.A., Dynnikova, G.Ya., and Malakhova, T.V., The contribution of added mass force to formation of propulsive force of flapping airfoil in viscous fluid, Tech. Phys. Lett., 2020, vol. 46, pp. 847–850. https://doi.org/10.1134/S1063785020090059

    Article  ADS  Google Scholar 

  15. Andronov, P.R., Grigorenko, D.A., Guvernyuk, S.V., and Dynnikova, G.Ya., Numerical simulation of plate autorotation in a viscous fluid flow, Fluid Dyn., 2007, vol. 42, no. 5, pp. 719–731.https://doi.org/10.1134/S0015462807050055

    Article  ADS  MATH  Google Scholar 

  16. Ogami, Y. and Akamatsu, T., Viscous flow simulation using the discrete vortex method – the diffusion velocity method, Comp. Fluids, 1991, vol. 19, nos. 3–4, pp. 433–441. https://doi.org/10.1016/0045-7930(91)90068-S

    Article  MATH  Google Scholar 

  17. Dynnikova, G.Ya., Calculation of flow around a circular cylinder on the basis of two-dimensional Navier–Stokes equations at large Reynolds numbers with high resolution in a boundary layer, Dokl. Phys., 2008, vol. 53, pp. 544–547.https://doi.org/10.1134/S102833580810011X

    Article  ADS  MATH  Google Scholar 

  18. Dynnikov, Ya.A. and Dynnikova, G.Ya., Numerical stability and numerical viscosity in certain meshless vortex methods as applied to the Navier–Stokes and heat equations, Zh. Comput. Math. And Math. Phys., 2011, vol. 51, 1792.https://doi.org/10.1134/S096554251110006X

    Article  ADS  MATH  Google Scholar 

  19. Godoy-Diana, R., Aider, J.L., and Wesfreid, J.E., Transitions in the wake of a flapping foil, Phys. Rev. E., 2008, vol. 77, p. 016308. https://doi.org/10.1103/PhysRevE.77.016308

  20. Dynnikova, G.Ya., Dynnikov, Ya.A., Guvernyuk, S.V., and Malakhova, T.V., Stability of a reverse Karman vortex street, Phys. Fluids, 2021, vol. 33, no. 2, pp. 024102-1-024102-10. https://doi.org/10.1063/5.0035575

    Article  ADS  Google Scholar 

  21. Cleaver, D., Wang, Z., and Gursul, I., Bifurcating flows of plunging aerofoils at high Strouhal numbers, J. Fluid Mech., 2012, vol. 708, pp. 349–376. https://doi.org/10.1017/jfm.2012.314

    Article  ADS  MATH  Google Scholar 

  22. Dynnikova, G.Y., Added mass in a model of viscous incompressible fluid, Dokl. Phys., 2019, vol. 64, pp. 397–400.https://doi.org/10.1134/S1028335819100045

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Program no. AAAA-A16-116021110201-2.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Guvernyuk, Ya. A. Dynnikov, G. Ya. Dynnikova or T. V. Malakhova.

Additional information

Translated by E.A. Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guvernyuk, S.V., Dynnikov, Y.A., Dynnikova, G.Y. et al. Hydrodynamic Mechanisms of the Influence of an Elastic Constraint on the Propulsive Force of Airfoil under Semideterministic Oscillations in Viscous Fluid Flow. Fluid Dyn 57, 549–557 (2022). https://doi.org/10.1134/S001546282205007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001546282205007X

Keywords:

Navigation