Skip to main content
Log in

Tracking Problem under Bounded Disturbances. Algebraic Synthesis Method

  • NONLINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the problem of a zero-sum differential tracking game with a quadratic performance functional in which the plant subjected to uncontrolled disturbances is described by a nonlinear ordinary differential equation. The synthesis of optimal controls is known to necessitate online solving a scalar Bellman–Isaacs partial differential equation that contains information about the trajectory of the process to be monitored. The lack of information about this process over the entire control interval makes the synthesized controls unimplementable. An algebraic method is proposed for solving the Bellman-Isaacs equation, which contains the current value of the monitored process. As an illustration of the results obtained, we give the simulation of the behavior of a nonlinear system with two players with an open control horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Isaacs, R., Differential Games, New York–London–Sydney: John Wiley and Sons, 1965. Translated under the title: Differentsial’nye igry, Moscow: Mir, 1967.

    MATH  Google Scholar 

  2. Isaacs, R.P., Games of pursuit, Paper P-257, Santa Monica, California: RAND Corp., 1951.

  3. Pontryagin, L.S., On linear differential games. 1, Dokl. Akad. Nauk SSSR, 1967, vol. 174, no. 6, pp. 1278–1280.

  4. Pontryagin, L.S., On linear differential games. 2, Dokl. Akad. Nauk SSSR, 1967, vol. 175, no. 4, pp. 764–766.

  5. Mishchenko, E.F., On certain game problems in pursuit and evasion, Autom. Remote Control, 1972, vol. 33, no. 9, pp. 1424–1429.

    MathSciNet  MATH  Google Scholar 

  6. Pshenichnyi, B.N., Neobkhodimye usloviya ekstremuma (Necessary Extremum Conditions), Moscow: Nauka, 1969.

    Google Scholar 

  7. Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games), Moscow: Nauka, 1974.

    Google Scholar 

  8. Bryson, А.Е. and Yu-Chi Ho, Applied Optimal Control. Optimization, Estimation and Control, Waltham, MA–Toronto–London, 1969.

  9. Angel, E. and Bellman, R., Dynamic Programming and Partial Differential Equations, New York–London: Academic Press, 1972. Translated under the title: Dinamicheskoe programmirovanie i uravneniya v chastnykh proizvodnykh, Moscow: Mir, 1974.

    MATH  Google Scholar 

  10. Kalman, R.E., The theory of optimal control and calculus of variations, in Mathematical Optimization Techniques, Bellman, R., Ed., Berkley, CA: Univ.California. 1963.

  11. Afanas’ev, V.N., Matematicheskaya teoriya upravleniya nelineinymi nepreryvnymi dinamicheskimi sistemami (Mathematical Theory of Control of Nonlinear Continuous Dynamical Systems), Moscow: KRASNAND, 2021.

    Google Scholar 

  12. Buratto, A., Cesaretto, R., and Zamarchi, R., HIV vs. the immune system: A differential game, Mathematics, 2015, vol. 3, no. 4, pp. 1139–1170.

    Article  MATH  Google Scholar 

  13. Bratus’, A.S., Novozhilov, A.S., and Platonov, A.P., Dinamicheskie sistemy i modeli biologii (Dynamic Systems and Models of Biology), Moscow: Fizmatlit, 2010.

    Google Scholar 

  14. Trubetskov, D.I., Phenomenon of Lotka–Volterra mathematical model and similar models, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelineinaya Din., 2011, vol. 19, no. 2, pp. 69–88.

    Google Scholar 

  15. Vasil’ev, F.P., Metody optimizatsii. T. 2 (Optimization Problems. Vol. 2), Moscow: MTsNMO, 2011.

    Google Scholar 

  16. Galeev, E.M., Zelikin, M.Yu., Konyagin, S.V., et al., Optimal’noe upravlenie (Optimal Control), Osmolovskii, N.P. and Tikhomirov, V.M., Eds., Moscow: MTsNMO, 2008.

  17. Egorov, A.I., Uravneniya Rikkati (Riccati Equations), Moscow: Fizmatlit, 2001.

    MATH  Google Scholar 

  18. Winternitz, P., Lie groups and solutions of nonlinear partial differential equations, Lect. Notes Phys., 1983, vol. 189, pp. 263–331.

    Article  Google Scholar 

  19. Liu, R.W. and Leake, J., Inverse Lyapunov problems, Tech. Rep. no. EE6510, Dep. Electr. Eng., Univ. Notre Dame, August 1965.

  20. Sain, M.K., Won, C.-H., Spencer, B.F., Jr., and Liberty, S.R., Cumulants and risk-sensitive control: A cost mean and variance theory with application to seismic protection of structures, Adv. Dyn. Games Appl. Ann. Int. Soc. Dyn. Games, Boston: Birkhäuser, 2000, vol. 5, pp. 427–459.

  21. Won Chang-Hee and Biswas Saroj, Optimal Control Using Algebraic Method for Control—Affine Nonlinear Systems, Temple Univ., USA, cwon@temple.edu, sbiswas@temple.edu, April 20, 2007.

  22. Albert, A., Regression and the Moor–Penrose Pseudoinverse, New York–London: Academic Press, 1972. Translated under the title: Regressiya, psevdoinversiya i rekurrentnoe otsenivanie, Moscow: Nauka, 1977.

    MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-8-00535.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Afanas’ev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanas’ev, V.N. Tracking Problem under Bounded Disturbances. Algebraic Synthesis Method. Autom Remote Control 83, 1758–1772 (2022). https://doi.org/10.1134/S00051179220110042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S00051179220110042

Keywords

Navigation