Skip to main content
Log in

The Stationary Navier–Stokes–Boussinesq System with a Regularized Dissipation Function

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We study a boundary value problem for a mathematical model describing the nonisothermal steady-state flow of a viscous fluid in a 3D (or 2D) bounded domain with locally Lipschitz boundary. The heat and mass transfer model considered here has the feature that a regularized Rayleigh dissipation function is used in the energy balance equation. This permits taking into account the energy dissipation due to the viscous friction effect. A theorem on the existence of a weak solution is proved under natural assumptions on the model data. Moreover, we establish extra conditions guaranteeing that the weak solution is unique and/or strong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. V. Fursikov and O. Yu. Imanuvilov, “Exact controllability of the Navier–Stokes and Boussinesq equations,” Russian Math. Surveys 54 (3), 565–618 (1999).

    Article  MathSciNet  Google Scholar 

  2. T. Hmidi and F. Rousset, “Global well-posedness for the Navier–Stokes–Boussinesq system with axisymmetric data,” Ann. Inst. H. Poincaré C Anal. Non Linéaire 27 (5), 1227–1246 (2010).

    Article  MathSciNet  Google Scholar 

  3. Q. Jiu and H. Yu, “Global well-posedness for 3D generalized Navier–Stokes–Boussinesq equations,” Acta Math. Appl. Sin. Engl. Ser. 32 (1), 1–16 (2016).

    Article  MathSciNet  Google Scholar 

  4. R. V. Brizitskii and Zh. Yu. Saritskaya, “Control problem for generalized Boussinesq model,” J. Physics: Conference Ser. 1268, 012011 (2019).

    Google Scholar 

  5. E. S. Baranovskii, “The optimal start control problem for two-dimensional Boussinesq equations,” Izv. Math. 86 (2), 221–242 (2022).

    Article  MathSciNet  Google Scholar 

  6. S. V. Ershkov, N. V. Burmasheva, D. D. Leshchenko, and E. Yu. Prosviryakov, “Exact solutions of the Oberbeck–Bussinesk equations for the description of shear thermal diffusion of Newtonian fluid flows,” Symmetry 15 (9), 1730 (2023).

    Article  Google Scholar 

  7. S. V. Ershkov, E. Yu. Prosviryakov, N. V. Burmasheva, and V. Christianto, “Solving the hydrodynamical system of equations of inhomogeneous fluid flows with thermal diffusion: A review,” Symmetry 15 (9), 1825 (2023).

    Article  Google Scholar 

  8. G. Palani and K.-Y. Kim, “Viscous dissipation effects on heat transfer in flow over an inclined plate,” J. Appl. Mech. Tech. Phys. 51 (2), 241–248 (2010).

    Article  Google Scholar 

  9. A. V. Baranov, “Nonisothermal dissipative flow of viscous liquid in a porous channel,” High Temperature 55 (3), 414–419 (2017).

    Article  Google Scholar 

  10. M. Moslemi and K. Javaherdeh, “Viscous dissipation effect in the free convection of non-Newtonian fluid with heat generation or absorption effect on the vertical wavy surface,” J. Appl. Math. 2021, 7567981 (2021).

    Article  Google Scholar 

  11. L. S. Goruleva and E. Yu. Prosviryakov, “A new class of exact solutions to the Navier–Stokes equations with allowance made for internal heat release,” Chemical Physics and Mesoscopy 24 (1), 82–92 (2022).

    Google Scholar 

  12. V. V. Privalova and E. Yu. Prosviryakov, “A new class of exact solutions of the Oberbeck–Boussinesq equations describing an incompressible fluid,” Theor. Found. Chem. Eng. 56 (3), 331–338 (2022).

    Article  Google Scholar 

  13. E. S. Baranovskii, “Exact solutions for non-isothermal flows of second grade fluid between parallel plates,” Nanomaterials 13 (8), 1409 (2023).

    Article  Google Scholar 

  14. L. Consiglieri, “Weak solutions for a class of non-Newtonian fluids with energy transfer,” J. Math. Fluid Mech. 2 (3), 267–293 (2000).

    Article  MathSciNet  Google Scholar 

  15. S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  16. O. A. Ladyzhenskaya, Mathematical Questions of the Dynamics of a Viscous Incompressible Fluid (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  17. D. A. Vorotnikov, “An objective model of viscoelastic fluid: Solvability of motion equations and attractors,” in Complex Motion in Fluids: Summer School Krogerup Hojskole, Denmark, 2007 (Copenhagen, 2007), p. 23.

    Google Scholar 

  18. E. S. Baranovskii and M. A. Artemov, “Global existence results for Oldroyd fluids with wall slip,” Acta Appl. Math. 147 (1), 197–210 (2017).

    Article  MathSciNet  Google Scholar 

  19. E. S. Baranovskii, “Steady flows of an Oldroyd fluid with threshold slip,” Commun. Pure Appl. Anal. 18 (2), 735–750 (2019).

    Article  MathSciNet  Google Scholar 

  20. E. S. Baranovskii and M. A. Artemov, “Optimal control for a nonlocal model of non-Newtonian fluid flows,” Mathematics 9 (3), 275 (2021).

    Article  Google Scholar 

  21. R. A. Adams and J. J. F. Fournier, Sobolev Spaces, in Pure Appl. Math. (Elsevier, Amsterdam, 2003), Vol. 40.

    Google Scholar 

  22. F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, in Appl. Math. Sci. (Springer, New York, 2013), Vol. 183.

    Google Scholar 

  23. R. E. Castillo and H. Rafeiro, An Introductory Course in Lebesgue Spaces, in CMS Books Math./ Ouvrages Math. SMC (Springer, Cham, 2016).

    Book  Google Scholar 

  24. P. G. Ciarlet, Mathematical Elasticity I: Three-Dimensional Elasticity, in Rech. Math. Appl. (North–Holland, Amsterdam, 1988), Vol. 1.

    Google Scholar 

  25. J. Nečas, Direct Methods in the Theory of Elliptic Equations, in Springer Monogr. Math. (Springer, Heidelberg, 2012).

    Book  Google Scholar 

  26. R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis (North-Holland Publishing Company, Amsterdam and New York, 1979).

    Google Scholar 

  27. D. Medková, The Laplace Equation (Springer, Cham, 2018).

    Book  Google Scholar 

  28. P. B. Mucha and M. Pokorný, “Weak solutions to equations of steady compressible heat conducting fluids,” Math. Models Methods Appl. Sci. 20 (5), 785–813 (2010).

    Article  MathSciNet  Google Scholar 

  29. E. S. Baranovskii and A. A. Domnich, “Model of a nonuniformly heated viscous flow through a bounded domain,” Differ. Equ. 56 (3), 304–314 (2020).

    Article  MathSciNet  Google Scholar 

  30. M. A. Artemov and E. S. Baranovskii, “Mixed boundary-value problems for motion equations of a viscoelastic medium,” Electron. J. Differential Equations 2015, 252 (2015).

    MathSciNet  Google Scholar 

  31. I. V. Skrypnik, Methods for Studying Nonlinear Elliptic Boundary Value Problems (Nauka, Moscow, 1990).

    Google Scholar 

  32. E. S. Baranovskii, “The flux problem for the Navier–Stokes–Voigt equations,” Differ. Equ. 57 (12), 1579–1584 (2021).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Baranovskii.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated from Matematicheskie Zametki, 2024, Vol. 115, pp. 665–678 https://doi.org/10.4213/mzm14163.

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranovskii, E.S. The Stationary Navier–Stokes–Boussinesq System with a Regularized Dissipation Function. Math Notes 115, 670–682 (2024). https://doi.org/10.1134/S0001434624050031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434624050031

Keywords

Navigation