Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tau-targeting therapies for Alzheimer disease

Abstract

Alzheimer disease (AD) is the most common form of dementia. Pathologically, AD is characterized by amyloid plaques and neurofibrillary tangles in the brain, with associated loss of synapses and neurons, resulting in cognitive deficits and eventually dementia. Amyloid-β (Aβ) peptide and tau protein are the primary components of the plaques and tangles, respectively. In the decades since Aβ and tau were identified, development of therapies for AD has primarily focused on Aβ, but tau has received more attention in recent years, in part because of the failure of various Aβ-targeting treatments in clinical trials. In this article, we review the current status of tau-targeting therapies for AD. Initially, potential anti-tau therapies were based mainly on inhibition of kinases or tau aggregation, or on stabilization of microtubules, but most of these approaches have been discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting therapies in clinical trials are immunotherapies, which have shown promise in numerous preclinical studies. Given that tau pathology correlates better with cognitive impairments than do Aβ lesions, targeting of tau is expected to be more effective than Aβ clearance once the clinical symptoms are evident. With future improvements in diagnostics, these two hallmarks of the disease might be targeted prophylactically.

Key points

  • Therapies for Alzheimer disease in clinical trials are gradually shifting from amyloid-β (Aβ)-targeting to tau-targeting approaches.

  • Early anti-tau therapies were based mainly on inhibition of kinases or tau aggregation, or on stabilization of microtubules, but most of these approaches have been discontinued because of toxicity and/or lack of efficacy.

  • Most of the tau-targeting approaches that are currently in clinical trials are immunotherapies.

  • Tau is likely to be a better target than Aβ once cognitive deficits manifest because the tau burden correlates better with clinical impairments than does the Aβ burden.

  • Eventually, with continued improvements in diagnostics, both Aβ and tau are likely to be targeted prophylactically for clearance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The defining pathological hallmarks of Alzheimer disease.
Fig. 2: Tau-related therapeutic targets.
Fig. 3: Proposed modes of action of anti-tau antibodies.
Fig. 4: Current status of clinical trials of drugs that target tau pathology.

Similar content being viewed by others

References

  1. Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 12, 459–509 (2016).

    Article  Google Scholar 

  2. Dixit, R., Ross, J. L., Goldman, Y. E. & Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science 319, 1086–1089 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Vershinin, M., Carter, B. C., Razafsky, D. S., King, S. J. & Gross, S. P. Multiple-motor based transport and its regulation by Tau. Proc. Natl Acad. Sci. USA 104, 87–92 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H. & Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112, 389–404 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Braak, H., Thal, D. R., Ghebremedhin, E. & Del Tredici, K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J. Neuropathol. Exp. Neurol. 70, 960–969 (2011).

    Article  PubMed  CAS  Google Scholar 

  6. Wharton, S. B. et al. Epidemiological pathology of Tau in the ageing brain: application of staging for neuropil threads (BrainNet Europe protocol) to the MRC cognitive function and ageing brain study. Acta Neuropathol. Commun. 4, 11 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA 83, 4913–4917 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Min, S. W. et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67, 953–966 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wang, J. Z., Grundke-Iqbal, I. & Iqbal, K. Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat. Med. 2, 871–875 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. Mena, R., Edwards, P. C., Harrington, C. R., Mukaetova-Ladinska, E. B. & Wischik, C. M. Staging the pathological assembly of truncated tau protein into paired helical filaments in Alzheimer’s disease. Acta Neuropathol. 91, 633–641 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  PubMed  CAS  Google Scholar 

  12. Braak, H. & Braak, E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol. Aging 18, 351–357 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. Murray, M. E. et al. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 10, 785–796 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Crary, J. F. et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Grundke-Iqbal, I. et al. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem. 261, 6084–6089 (1986).

    PubMed  CAS  Google Scholar 

  16. Kidd, M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197, 192–193 (1963).

    Article  PubMed  CAS  Google Scholar 

  17. Meraz-Rios, M. A., Lira-De Leon, K. I., Campos-Pena, V., De Anda-Hernandez, M. A. & Mena-Lopez, R. Tau oligomers and aggregation in Alzheimer’s disease. J. Neurochem. 112, 1353–1367 (2010).

    Article  PubMed  CAS  Google Scholar 

  18. Arima, K. Ultrastructural characteristics of tau filaments in tauopathies: immuno-electron microscopic demonstration of tau filaments in tauopathies. Neuropathology 26, 475–483 (2006).

    Article  PubMed  Google Scholar 

  19. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. & Crowther, R. A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3, 519–526 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. Himmler, A., Drechsel, D., Kirschner, M. W. & Martin, D. W. Jr. Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol. Cell. Biol. 9, 1381–1388 (1989).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Noble, W., Hanger, D. P., Miller, C. C. & Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol. 4, 83 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lindwall, G. & Cole, R. D. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 259, 5301–5305 (1984).

    PubMed  CAS  Google Scholar 

  23. Luna-Muñoz, J., Chávez-Macías, L., García-Sierra, F. & Mena, R. Earliest stages of tau conformational changes are related to the appearance of a sequence of specific phospho-dependent tau epitopes in Alzheimer’s disease. J. Alzheimers Dis. 12, 365–375 (2007).

    Article  PubMed  Google Scholar 

  24. Augustinack, J. C., Schneider, A., Mandelkow, E. M. & Hyman, B. T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. 103, 26–35 (2002).

    Article  PubMed  CAS  Google Scholar 

  25. Hanger, D. P. & Wray, S. Tau cleavage and tau aggregation in neurodegenerative disease. Biochem. Soc. Trans. 38, 1016–1020 (2010).

    Article  PubMed  CAS  Google Scholar 

  26. Kimura, T. et al. Sequential changes of tau-site-specific phosphorylation during development of paired helical filaments. Dementia 7, 177–181 (1996).

    PubMed  CAS  Google Scholar 

  27. Yoshida, H. & Goedert, M. Sequential phosphorylation of tau protein by cAMP-dependent protein kinase and SAPK4/p38δ or JNK2 in the presence of heparin generates the AT100 epitope. J. Neurochem. 99, 154–164 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. Shukla, V., Skuntz, S. & Pant, H. C. Deregulated Cdk5 activity is involved in inducing Alzheimer’s disease. Arch. Med. Res. 43, 655–662 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Tell, V. & Hilgeroth, A. Recent developments of protein kinase inhibitors as potential AD therapeutics. Front. Cell. Neurosci. 7, 189 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yarza, R., Vela, S., Solas, M. & Ramirez, M. J. c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front. Pharmacol. 6, 321 (2015).

    PubMed  Google Scholar 

  31. Liu, S. L. et al. The role of Cdk5 in Alzheimer’s disease. Mol. Neurobiol. 53, 4328–4342 (2016).

    Article  PubMed  CAS  Google Scholar 

  32. Wilkaniec, A., Czapski, G. A. & Adamczyk, A. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses. J. Neurochem. 136, 222–233 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. Liu, F., Grundke-Iqbal, I., Iqbal, K. & Gong, C. X. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci. 22, 1942–1950 (2005).

    Article  PubMed  Google Scholar 

  34. Sontag, J. M. & Sontag, E. Protein phosphatase 2A dysfunction in Alzheimer’s disease. Front. Mol. Neurosci. 7, 16 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang, Y. & Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 17, 5–21 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Cotman, C. W., Poon, W. W., Rissman, R. A. & Blurton-Jones, M. The role of caspase cleavage of tau in Alzheimer disease neuropathology. J. Neuropathol. Exp. Neurol. 64, 104–112 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. Guo, T., Noble, W. & Hanger, D. P. Roles of tau protein in health and disease. Acta Neuropathol. 133, 665–704 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhao, X. et al. Caspase-2 cleavage of tau reversibly impairs memory. Nat. Med. 22, 1268–1276 (2016).

    Article  PubMed  CAS  Google Scholar 

  39. Jadhav, S. et al. Truncated tau deregulates synaptic markers in rat model for human tauopathy. Front. Cell. Neurosci. 9, 24 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Liu, F. et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain 132, 1820–1832 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cash, A. D. et al. Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am. J. Pathol. 162, 1623–1627 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hempen, B. & Brion, J. P. Reduction of acetylated alpha-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 55, 964–972 (1996).

    Article  PubMed  CAS  Google Scholar 

  43. Zhang, F. et al. Posttranslational modifications of α-tubulin in Alzheimer disease. Transl Neurodegener. 4, 9 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307, 1282–1288 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. Stamer, K., Vogel, R., Thies, E., Mandelkow, E. & Mandelkow, E. M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156, 1051–1063 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rapoport, M., Dawson, H. N., Binder, L. I., Vitek, M. P. & Ferreira, A. Tau is essential to beta -amyloid-induced neurotoxicity. Proc. Natl Acad. Sci. USA 99, 6364–6369 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Vossel, K. A. et al. Tau reduction prevents Aβ-induced defects in axonal transport. Science 330, 198 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science 316, 750–754 (2007).

    Article  PubMed  CAS  Google Scholar 

  49. Nelson, P. T. et al. Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles “do count” when staging disease severity. J. Neuropathol. Exp. Neurol. 66, 1136–1146 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vazquez, A. Metabolic states following accumulation of intracellular aggregates: implications for neurodegenerative diseases. PLOS ONE 8, e63822 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Mandelkow, E. M., Stamer, K., Vogel, R., Thies, E. & Mandelkow, E. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol. Aging 24, 1079–1085 (2003).

    Article  PubMed  CAS  Google Scholar 

  52. Callahan, L. M., Vaules, W. A. & Coleman, P. D. Quantitative decrease in synaptophysin message expression and increase in cathepsin D message expression in Alzheimer disease neurons containing neurofibrillary tangles. J. Neuropathol. Exp. Neurol. 58, 275–287 (1999).

    Article  PubMed  CAS  Google Scholar 

  53. Ginsberg, S. D., Hemby, S. E., Lee, V. M., Eberwine, J. H. & Trojanowski, J. Q. Expression profile of transcripts in Alzheimer’s disease tangle-bearing CA1 neurons. Ann. Neurol. 48, 77–87 (2000).

    Article  PubMed  CAS  Google Scholar 

  54. Shafiei, S. S., Guerrero-Munoz, M. J. & Castillo-Carranza, D. L. Tau oligomers: cytotoxicity, propagation, and mitochondrial damage. Front. Aging Neurosci. 9, 83 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Cárdenas-Aguayo Mdel, C., Gómez-Virgilio, L., DeRosa, S. & Meraz-Ríos, M. A. The role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem. Neurosci. 5, 1178–1191 (2014).

    Article  PubMed  CAS  Google Scholar 

  56. Fagan, A. M. et al. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci. Transl Med. 6, 226ra30 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 69, 1445–1452 (2012).

    Article  PubMed  Google Scholar 

  58. Hu, W. T., Trojanowski, J. Q. & Shaw, L. M. Biomarkers in frontotemporal lobar degenerations — progress and challenges. Prog. Neurobiol. 95, 636–648 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Olsson, B. et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 15, 673–684 (2016).

    Article  PubMed  CAS  Google Scholar 

  60. Wagshal, D. et al. Divergent CSF tau alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 86, 244–250 (2015).

    Article  PubMed  Google Scholar 

  61. Mufson, E. J., Ward, S. & Binder, L. Prefibrillar tau oligomers in mild cognitive impairment and Alzheimer’s disease. Neurodegener. Dis. 13, 151–153 (2014).

    Article  PubMed  CAS  Google Scholar 

  62. Flach, K. et al. Tau oligomers impair artificial membrane integrity and cellular viability. J. Biol. Chem. 287, 43223–43233 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Lasagna-Reeves, C. A. et al. The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. Acta Neuropathol. Commun. 2, 56 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Goedert, M. & Spillantini, M. G. Propagation of Tau aggregates. Mol. Brain 10, 18 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Usenovic, M. et al. Internalized tau oligomers cause neurodegeneration by inducing accumulation of pathogenic tau in human neurons derived from induced pluripotent stem cells. J. Neurosci. 35, 14234–14250 (2015).

    Article  PubMed  CAS  Google Scholar 

  66. Whyte, L. S., Lau, A. A., Hemsley, K. M., Hopwood, J. J. & Sargeant, T. J. Endo-lysosomal and autophagic dysfunction: a driving factor in Alzheimer’s disease? J. Neurochem. 140, 703–717 (2017).

    Article  PubMed  CAS  Google Scholar 

  67. Zare-Shahabadi, A., Masliah, E., Johnson, G. V. & Rezaei, N. Autophagy in Alzheimer’s disease. Rev. Neurosci. 26, 385–395 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Nixon, R. A. The role of autophagy in neurodegenerative disease. Nat. Med. 19, 983–997 (2013).

    Article  PubMed  CAS  Google Scholar 

  69. Tramutola, A. et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J. Neurochem. 133, 739–749 (2015).

    Article  PubMed  CAS  Google Scholar 

  70. Li, X., Alafuzoff, I., Soininen, H., Winblad, B. & Pei, J. J. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J. 272, 4211–4220 (2005).

    Article  PubMed  CAS  Google Scholar 

  71. Lafay-Chebassier, C. et al. mTOR/p70S6k signalling alteration by Aβ exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer’s disease. J. Neurochem. 94, 215–225 (2005).

    Article  PubMed  CAS  Google Scholar 

  72. Pickford, F. et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Invest. 118, 2190–2199 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Boland, B. et al. Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci. 28, 6926–6937 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Sanchez-Varo, R. et al. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol. 123, 53–70 (2012).

    Article  PubMed  Google Scholar 

  75. Bordi, M. et al. Autophagy flux in CA1 neurons of Alzheimer hippocampus: increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 12, 2467–2483 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Piras, A., Collin, L., Gruninger, F., Graff, C. & Ronnback, A. Autophagic and lysosomal defects in human tauopathies: analysis of post-mortem brain from patients with familial Alzheimer disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol. Commun. 4, 22 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yu, W. H. et al. Macroautophagy — a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol. 171, 87–98 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lin, C. L. et al. Amyloid-β suppresses AMP-activated protein kinase (AMPK) signaling and contributes to α-synuclein-induced cytotoxicity. Exp. Neurol. 275, 84–98 (2016).

    Article  PubMed  CAS  Google Scholar 

  79. Park, H. et al. Neuropathogenic role of adenylate kinase-1 in Aβ-mediated tau phosphorylation via AMPK and GSK3β. Hum. Mol. Genet. 21, 2725–2737 (2012).

    Article  PubMed  CAS  Google Scholar 

  80. Wang, Y. & Mandelkow, E. Degradation of tau protein by autophagy and proteasomal pathways. Biochem. Soc. Trans. 40, 644–652 (2012).

    Article  PubMed  CAS  Google Scholar 

  81. Mori, H., Kondo, J. & Ihara, Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 235, 1641–1644 (1987).

    Article  PubMed  CAS  Google Scholar 

  82. Perry, G., Friedman, R., Shaw, G. & Chau, V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc. Natl Acad. Sci. USA 84, 3033–3036 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gong, B., Radulovic, M., Figueiredo-Pereira, M. E. & Cardozo, C. The ubiquitin–proteasome system: potential therapeutic targets for Alzheimer’s disease and spinal cord injury. Front. Mol. Neurosci. 9, 4 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Morawe, T., Hiebel, C., Kern, A. & Behl, C. Protein homeostasis, aging and Alzheimer’s disease. Mol. Neurobiol. 46, 41–54 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Gurney, M. E., D’Amato, E. C. & Burgin, A. B. Phosphodiesterase-4 (PDE4) molecular pharmacology and Alzheimer’s disease. Neurotherapeutics 12, 49–56 (2015).

    Article  PubMed  CAS  Google Scholar 

  86. Sweeney, P. et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener. 6, 6 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Deger, J. M., Gerson, J. E. & Kayed, R. The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell 14, 715–724 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ittner, L. M. & Götz, J. Amyloid-β and tau — a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 12, 65–72 (2011).

    Article  PubMed  CAS  Google Scholar 

  89. Ke, Y. D. et al. Lessons from tau-deficient mice. Int. J. Alzheimers Dis. 2012, 873270 (2012).

    PubMed  PubMed Central  Google Scholar 

  90. Wittrup, A. & Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet. 16, 543–552 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zuckerman, J. E. & Davis, M. E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14, 843–856 (2015).

    Article  PubMed  CAS  Google Scholar 

  92. Corey, D. R. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat. Neurosci. 20, 497–499 (2017).

    Article  PubMed  CAS  Google Scholar 

  93. Finkel, R. S. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388, 3017–3026 (2016).

    Article  PubMed  CAS  Google Scholar 

  94. Bormann, J. Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. Eur. J. Pharmacol. 166, 591–592 (1989).

    Article  PubMed  CAS  Google Scholar 

  95. Kornhuber, J., Bormann, J., Retz, W., Hubers, M. & Riederer, P. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur. J. Pharmacol. 166, 589–590 (1989).

    Article  PubMed  CAS  Google Scholar 

  96. Chohan, M. O., Khatoon, S., Iqbal, I. G. & Iqbal, K. Involvement of I2 PP2A in the abnormal hyperphosphorylation of tau and its reversal by memantine. FEBS Lett. 580, 3973–3979 (2004).

    Article  CAS  Google Scholar 

  97. Miltner, F. O. Use of symptomatic therapy with memantine in cerebral coma. II. Development of stretch synergisms in coma with brain stem symptoms. Arzneimittelforschung 32, 1271–1273 (1982).

    PubMed  CAS  Google Scholar 

  98. Miltner, F. O. Use of symptomatic therapy with memantine in cerebral coma. I. Correlation of coma stages and EEG spectral paters. Arzneimittelforschung 32, 1268–1270 (1982).

    PubMed  CAS  Google Scholar 

  99. Jiang, J. & Jiang, H. Efficacy and adverse effects of memantine treatment for Alzheimer’s disease from randomized controlled trials. Neurol. Sci. 36, 1633–1641 (2015).

    Article  PubMed  Google Scholar 

  100. Matsunaga, S., Kishi, T. & Iwata, N. Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLoS ONE 10, e0123289 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kishi, T., Matsunaga, S. & Iwata, N. Memantine for the treatment of frontotemporal dementia: a meta-analysis. Neuropsychiatr. Dis. Treat. 11, 2883–2885 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Tsoi, K. K. et al. Combination therapy showed limited superiority over monotherapy for Alzheimer disease: a meta-analysis of 14 randomized trials. J. Am. Med. Dir. Assoc. 17, 863.e1–863.e8 (2016).

    Article  Google Scholar 

  103. Corcoran, N. M. et al. Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J. Clin. Neurosci. 17, 1025–1033 (2010).

    Article  PubMed  CAS  Google Scholar 

  104. Rueli, R. H. et al. Selenprotein S reduces endoplasmic reticulum stress-induced phosphorylation of tau: potential selenate mitigation of tau pathology. J. Alzheimers Dis. 55, 749–762 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. van Eersel, J. et al. Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc. Natl Acad. Sci. USA 107, 13888–13893 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jones, N. C. et al. Targeting hyperphosphorylated tau with sodium selenate suppresses seizures in rodent models. Neurobiol. Dis. 45, 897–901 (2012).

    Article  PubMed  CAS  Google Scholar 

  107. Liu, S. J. et al. Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain 139, 1919–1938 (2016).

    Article  PubMed  Google Scholar 

  108. Shultz, S. R. et al. Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain 138, 1297–1313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Malpas, C. B. et al. A phase IIa randomized control trial of VEL (sodium selenate) in mild–moderate Alzheimer’s disease. J. Alzheimers Dis. 54, 223–232 (2016).

    Article  PubMed  CAS  Google Scholar 

  110. Carlson, B. A., Dubay, M. M., Sausville, E. A., Brizuela, L. & Worland, P. J. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res. 56, 2973–2978 (1996).

    PubMed  CAS  Google Scholar 

  111. Meijer, L. et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243, 527–536 (1997).

    Article  PubMed  CAS  Google Scholar 

  112. Mapelli, M. et al. Mechanism of CDK5/p25 binding by CDK inhibitors. J. Med. Chem. 48, 671–679 (2005).

    Article  PubMed  CAS  Google Scholar 

  113. Wu, J., Stoica, B. A. & Faden, A. I. Cell cycle activation and spinal cord injury. Neurotherapeutics 8, 221–228 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Khalil, H. S., Mitev, V., Vlaykova, T., Cavicchi, L. & Zhelev, N. Discovery and development of Seliciclib. How systems biology approaches can lead to better drug performance. J. Biotechnol. 202, 40–49 (2015).

    Article  PubMed  CAS  Google Scholar 

  115. Asghar, U., Witkiewicz, A. K., Turner, N. C. & Knudsen, E. S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov. 14, 130–146 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Dominguez, J. M. et al. Evidence for irreversible inhibition of glycogen synthase kinase-3β by tideglusib. J. Biol. Chem. 287, 893–904 (2012).

    Article  PubMed  CAS  Google Scholar 

  117. Martinez, A., Alonso, M., Castro, A., Perez, C. & Moreno, F. J. First non-ATP competitive glycogen synthase kinase 3 β (GSK-3β) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J. Med. Chem. 45, 1292–1299 (2002).

    Article  PubMed  CAS  Google Scholar 

  118. DaRocha-Souto, B. et al. Activation of glycogen synthase kinase-3 beta mediates β-amyloid induced neuritic damage in Alzheimer’s disease. Neurobiol. Dis. 45, 425–437 (2012).

    Article  PubMed  CAS  Google Scholar 

  119. Sereno, L. et al. A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol. Dis 35, 359–367 (2009).

    Article  PubMed  CAS  Google Scholar 

  120. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00948259 (2009).

  121. del Ser, T. et al. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J. Alzheimers Dis. 33, 205–215 (2013).

    PubMed  Google Scholar 

  122. Lovestone, S. et al. A phase II trial of tideglusib in Alzheimer’s disease. J. Alzheimers Dis. 45, 75–88 (2015).

    Article  PubMed  CAS  Google Scholar 

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01049399 (2012).

  124. Tolosa, E. et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov. Disord. 29, 470–478 (2014).

    Article  PubMed  CAS  Google Scholar 

  125. Stambolic, V., Ruel, L. & Woodgett, J. R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr. Biol. 6, 1664–1668 (1996).

    Article  PubMed  CAS  Google Scholar 

  126. Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455–8459 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Forlenza, O. V., De-Paula, V. J. & Diniz, B. S. Neuroprotective effects of lithium: implications for the treatment of Alzheimer’s disease and related neurodegenerative disorders. ACS Chem. Neurosci. 5, 443–450 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Forlenza, O. V. et al. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br. J. Psychiatry 198, 351–356 (2011).

    Article  PubMed  Google Scholar 

  129. Nunes, M. A., Viel, T. A. & Buck, H. S. Microdose lithium treatment stabilized cognitive impairment in patients with Alzheimer’s disease. Curr. Alzheimer Res. 10, 104–107 (2013).

    PubMed  CAS  Google Scholar 

  130. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02601859 (2015).

  131. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02862210 (2017).

  132. Min, S. W. et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21, 1154–1162 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02422485 (2017).

  134. Sandhu, P. et al. Pharmacokinetics and pharmacodynamics to support clinical studies of MK-8719: an O-GlcNAcase inhibitor for progressive supranuclear palsy [abstract]. Alzheimers Dement. 12 (Suppl.), P4–036 (2016).

    Google Scholar 

  135. [No authors listed.] Alectos Therapeutics announces FDA orphan drug designation for MK-8719: an investigational small-molecule OGA inhibitor for treatment of progressive supranuclear palsy. Alectos http://alectos.com/content/alectos-therapeutics-announces-fda-orphan-drug-designation-mk-8719-investigational-small-molecule-oga-inhibitor-treatment-progressive-supranuclear-palsy/ (2016).

  136. Rohn, T. T. The role of caspases in Alzheimer’s disease; potential novel therapeutic opportunities. Apoptosis 15, 1403–1409 (2010).

    Article  PubMed  CAS  Google Scholar 

  137. Panza, F. et al. Tau-centric targets and drugs in clinical development for the treatment of Alzheimer’s disease. Biomed. Res. Int. 2016, 3245935 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wischik, C. M., Edwards, P. C., Lai, R. Y., Roth, M. & Harrington, C. R. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl Acad. Sci. USA 93, 11213–11218 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01253122 (2010).

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00515333 (2008).

  141. Wischik, C. M. et al. Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J. Alzheimers Dis. 44, 705–720 (2015).

    Article  PubMed  CAS  Google Scholar 

  142. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00684944 (2012).

  143. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01689233 (2018).

  144. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01689246 (2018).

  145. Gauthier, S. et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388, 2873–2884 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Fagan, T. In first phase 3 trial, the tau drug LMTM did not work. Period. Alzforum http://www.alzforum.org/news/conference-coverage/first-phase-3-trial-tau-drug-lmtm-did-not-work-period#show-more (2016).

  147. Fagan, T. Tau inhibitor fails again — subgroup analysis irks clinicians at CTAD. Alzforum http://www.alzforum.org/news/conference-coverage/tau-inhibitor-fails-again-subgroup-analysis-irks-clinicians-ctad (2016).

  148. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02245568 (2018).

  149. Hu, S. et al. Clinical development of curcumin in neurodegenerative disease. Expert Rev. Neurother. 15, 629–637 (2015).

    Article  PubMed  CAS  Google Scholar 

  150. Hamaguchi, T., Ono, K. & Yamada, M. Review: Curcumin and Alzheimer’s disease. CNS Neurosci. Ther. 16, 285–297 (2010).

    Article  PubMed  CAS  Google Scholar 

  151. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00164749 (2008).

  152. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00099710 (2009).

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00595582 (2012).

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01383161 (2017).

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01811381 (2018).

  156. Bollag, D. M. et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55, 2325–2333 (1995).

    PubMed  CAS  Google Scholar 

  157. Brunden, K. R. et al. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J. Neurosci. 30, 13861–13866 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Zhang, B. et al. The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J. Neurosci. 32, 3601–3611 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Barten, D. M. et al. Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule-stabilizing agent BMS-241027. J. Neurosci. 32, 7137–7145 (2012).

    Article  PubMed  CAS  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01492374 (2014).

  161. Magen, I. & Gozes, I. Microtubule-stabilizing peptides and small molecules protecting axonal transport and brain function: focus on davunetide (NAP). Neuropeptides 47, 489–495 (2013).

    Article  PubMed  CAS  Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01110720 (2013).

  163. Boxer, A. L. et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 13, 676–685 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01966666 (2013).

  165. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02133846 (2016).

  166. Fitzgerald, D. P. et al. TPI-287, a new taxane family member, reduces the brain metastatic colonization of breast cancer cells. Mol. Cancer Ther. 11, 1959–1967 (2012).

    Article  PubMed  CAS  Google Scholar 

  167. McQuade, J. L. et al. A phase I study of TPI 287 in combination with temozolomide for patients with metastatic melanoma. Melanoma Res. 26, 604–608 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Mitchell, D. et al. A phase 1 trial of TPI 287 as a single agent and in combination with temozolomide in patients with refractory or recurrent neuroblastoma or medulloblastoma. Pediatr. Blood Cancer 63, 39–46 (2016).

    Article  PubMed  CAS  Google Scholar 

  169. Wachtel, H. Potential antidepressant activity of rolipram and other selective cyclic adenosine 3ʹ,5ʹ-monophosphate phosphodiesterase inhibitors. Neuropharmacology 22, 267–272 (1983).

    Article  PubMed  CAS  Google Scholar 

  170. Myeku, N. et al. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP–PKA signaling. Nat. Med. 22, 46–53 (2016).

    Article  PubMed  CAS  Google Scholar 

  171. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02648672 (2017).

  172. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02840279 (2017).

  173. Lobello, K., Ryan, J. M., Liu, E., Rippon, G. & Black, R. Targeting beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer’s disease. Int. J. Alzheimers Dis. 2012, 628070 (2012).

    PubMed  PubMed Central  Google Scholar 

  174. Valera, E., Spencer, B. & Masliah, E. Immunotherapeutic approaches targeting amyloid-β, α-synuclein, and tau for the treatment of neurodegenerative disorders. Neurotherapeutics 13, 179–189 (2016).

    Article  PubMed  CAS  Google Scholar 

  175. Abushouk, A. I. et al. Bapineuzumab for mild to moderate Alzheimer’s disease: a meta-analysis of randomized controlled trials. BMC Neurol. 17, 66 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Penninkilampi, R., Brothers, H. M. & Eslick, G. D. Safety and efficacy of anti-amyloid-β immunotherapy in Alzheimer’s disease: a systematic review and meta-analysis. J. Neuroimmune Pharmacol. 12, 194–203 (2017).

    Article  PubMed  Google Scholar 

  177. Wisniewski, T. & Drummond, E. Developing therapeutic vaccines against Alzheimer’s disease. Expert Rev. Vaccines 15, 401–415 (2016).

    PubMed  CAS  Google Scholar 

  178. Panza, F., Solfrizzi, V., Imbimbo, B. P. & Logroscino, G. Amyloid-directed monoclonal antibodies for the treatment of Alzheimer’s disease: the point of no return? Expert Opin. Biol. Ther. 14, 1465–1476 (2014).

    Article  PubMed  CAS  Google Scholar 

  179. Serrano-Pozo, A. et al. Beneficial effect of human anti-amyloid-β active immunization on neurite morphology and tau pathology. Brain 133, 1312–1327 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Boche, D., Denham, N., Holmes, C. & Nicoll, J. A. Neuropathology after active Aβ42 immunotherapy: implications for Alzheimer’s disease pathogenesis. Acta Neuropathol. 120, 369–384 (2010).

    Article  PubMed  CAS  Google Scholar 

  181. Boche, D. et al. Reduction of aggregated Tau in neuronal processes but not in the cell bodies after Aβ42 immunisation in Alzheimer’s disease. Acta Neuropathol. 120, 13–20 (2010).

    Article  PubMed  CAS  Google Scholar 

  182. Blennow, K. et al. Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch. Neurol. 69, 1002–1010 (2012).

    Article  PubMed  Google Scholar 

  183. Salloway, S. et al. A phase 2 multiple ascending dose trial of bapineuzumab in mild to moderate Alzheimer disease. Neurology 73, 2061–2070 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Vandenberghe, R. et al. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimers Res. Ther. 8, 18 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Asuni, A. A., Boutajangout, A., Quartermain, D. & Sigurdsson, E. M. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J. Neurosci. 27, 9115–9129 (2007).

    Article  PubMed  CAS  Google Scholar 

  186. Boutajangout, A., Ingadottir, J., Davies, P. & Sigurdsson, E. M. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J. Neurochem. 118, 658–667 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Asuni, A. A., Quartermain, D. & Sigurdsson, E. M. Tau-based immunotherapy for dementia [abstract]. Alzheimers Dement. 2 (Suppl.), O2-05-04 (2006).

    Google Scholar 

  188. Boutajangout, A., Ingadottir, J., Davies, P. & Sigurdsson, E. M. Passive tau immunotherapy diminishes functional decline and clears tau aggregates in a mouse model of tauopathy [abstract]. Alzheimers Dement. 6 (Suppl.), P3–427 (2010).

    Google Scholar 

  189. Bi, M., Ittner, A., Ke, Y. D., Gotz, J. & Ittner, L. M. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS ONE 6, e26860 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Theunis, C. et al. Efficacy and safety of a liposome-based vaccine against protein tau, assessed in tau. P301L mice that model tauopathy. PLoS ONE 8, e72301 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Boutajangout, A., Quartermain, D. & Sigurdsson, E. M. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J. Neurosci. 30, 16559–16566 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Troquier, L. et al. Targeting phospho-Ser422 by active tau immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr. Alzheimer Res. 9, 397–405 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Rajamohamedsait, H., Rasool, S., Rajamohamedsait, W., Lin, Y. & Sigurdsson, E. M. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-β pathologies in 3xTg mice. Sci. Rep. 7, 17034 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Boimel, M. et al. Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp. Neurol. 224, 472–485 (2010).

    Article  PubMed  CAS  Google Scholar 

  195. Davtyan, H. et al. MultiTEP platform-based DNA epitope vaccine targeting N-terminus of tau induces strong immune responses and reduces tau pathology in THY-Tau22 mice. Vaccine 35, 2015–2024 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Selenica, M. L. et al. Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis. J. Neuroinflamm. 11, 152 (2014).

    Article  CAS  Google Scholar 

  197. Kontsekova, E., Zilka, N., Kovacech, B., Novak, P. & Novak, M. First-in-man tau vaccine targeting structural determinants essential for pathological tau–tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res. Ther. 6, 44 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Ando, K. et al. Vaccination with Sarkosyl insoluble PHF-tau decrease neurofibrillary tangles formation in aged tau transgenic mouse model: a pilot study. J. Alzheimers Dis. 40 (Suppl. 1), S135–S145 (2014).

    Article  PubMed  CAS  Google Scholar 

  199. Rosenmann, H. et al. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch. Neurol. 63, 1459–1467 (2006).

    Article  PubMed  Google Scholar 

  200. Rozenstein-Tsalkovich, L. et al. Repeated immunization of mice with phosphorylated-tau peptides causes neuroinflammation. Exp. Neurol. 248, 451–456 (2013).

    Article  PubMed  CAS  Google Scholar 

  201. Chai, X. et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J. Biol. Chem. 286, 34457–34467 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Congdon, E. E., Gu, J., Sait, H. B. & Sigurdsson, E. M. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcγ receptor endocytosis and is a prerequisite for acute tau protein clearance. J. Biol. Chem. 288, 35452–35465 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Congdon, E. E. et al. Affinity of tau antibodies for solubilized pathological tau species but not their immunogen or insoluble Tau aggregates predicts in vivo and ex vivo efficacy. Mol. Neurodegener 11, 62–86 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Gu, J., Congdon, E. E. & Sigurdsson, E. M. Two novel tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce tau protein pathology. J. Biol. Chem. 288, 33081–33095 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Ittner, A. et al. Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J. Neurochem. 132, 135–145 (2015).

    Article  PubMed  CAS  Google Scholar 

  206. Krishnamurthy, P. K., Deng, Y. & Sigurdsson, E. M. Mechanistic studies of antibody-mediated clearance of tau aggregates using an ex vivo brain slice model. Front. Psychiatry 2, 59 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Liu, W. et al. Vectored intracerebral immunization with the anti-tau monoclonal antibody PHF1 markedly reduces tau pathology in mutant tau transgenic mice. J. Neurosci. 36, 12425–12435 (2016).

    Article  PubMed  CAS  Google Scholar 

  208. Sankaranarayanan, S. et al. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS ONE 10, e0125614 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Subramanian, S., Savanur, G. & Madhavadas, S. Passive immunization targeting the N-terminal region of phosphorylated tau (residues 68–71) improves spatial memory in okadaic acid induced tauopathy model rats. Biochem. Biophys. Res. Commun. 483, 585–589 (2017).

    Article  PubMed  CAS  Google Scholar 

  210. Dai, C. L. et al. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies. J. Neural Transm. 122, 607–617 (2015).

    Article  PubMed  CAS  Google Scholar 

  211. Yanamandra, K. et al. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci. Transl Med. 9, eaal2029 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Kfoury, N., Holmes, B. B., Jiang, H., Holtzman, D. M. & Diamond, M. I. Trans-cellular propagation of Tau aggregation by fibrillar species. J. Biol. Chem. 287, 19440–19451 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Yanamandra, K. et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80, 402–414 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Dai, C. L., Tung, Y. C., Liu, F., Gong, C. X. & Iqbal, K. Tau passive immunization inhibits not only tau but also Aβ pathology. Alzheimers Res. Ther. 9, 1 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Bright, J. et al. Human secreted tau increases amyloid-beta production. Neurobiol. Aging 36, 693–709 (2015).

    Article  PubMed  CAS  Google Scholar 

  216. Castillo-Carranza, D. L. et al. Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J. Neurosci. 34, 4260–4272 (2014).

    Article  PubMed  CAS  Google Scholar 

  217. Castillo-Carranza, D. L. et al. Specific targeting of tau oligomers in Htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J. Alzheimers Dis. 40 (Suppl. 1), S97–S111 (2014).

    Article  PubMed  CAS  Google Scholar 

  218. d’Abramo, C., Acker, C. M., Jimenez, H. T. & Davies, P. Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS ONE 8, e62402 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Kondo, A. et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523, 431–436 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. d’Abramo, C., Acker, C. M., Jimenez, H. & Davies P. Passive immunization in JNPL3 transgenic mice using an array of phospho-tau specific antibodies. PLoS ONE 10, e0135774 (2015).

  221. Walls, K. C. et al. p-Tau immunotherapy reduces soluble and insoluble tau in aged 3xTg-AD mice. Neurosci. Lett. 575, 96–100 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Lee, S. H. et al. Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement. Cell Rep. 16, 1690–1700 (2016).

    Article  PubMed  CAS  Google Scholar 

  223. Umeda, T. et al. Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann. Clin. Transl Neurol. 2, 241–255 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Collin, L. et al. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain 137, 2834–2846 (2014).

    Article  PubMed  Google Scholar 

  225. Nisbet, R. M. et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain 140, 1220–1330 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Ising, C. et al. AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J. Exp. Med. 214, 1227–1238 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Pedersen, J. T. & Sigurdsson, E. M. Tau immunotherapy for Alzheimer’s disease. Trends Mol. Med. 21, 394–402 (2015).

    Article  PubMed  CAS  Google Scholar 

  228. Walker, L. C., Diamond, M. I., Duff, K. E. & Hyman, B. T. Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurol. 70, 304–310 (2013).

    Article  PubMed  Google Scholar 

  229. Sigurdsson, E. M. Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J. Alzheimers Dis. 15, 157–168 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Krishnaswamy, S. et al. Antibody-derived in vivo imaging of tau pathology. J. Neurosci. 34, 16835–16850 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Fuller, J. P., Stavenhagen, J. B. & Teeling, J. L. New roles for Fc receptors in neurodegeneration — the impact on immunotherapy for Alzheimer’s disease. Front. Neurosci. 8, 235 (2014).

    PubMed  PubMed Central  Google Scholar 

  232. van der Kleij, H. et al. Evidence for neuronal expression of functional Fc (ε and γ) receptors. J. Allergy Clin. Immunol. 125, 757–760 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. McEwan, W. A. et al. Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proc. Natl Acad. Sci. USA 114, 574–579 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Medina, M. & Avila, J. The role of extracellular tau in the spreading of neurofibrillary pathology. Front. Cell. Neurosci. 8, 113 (2014).

    PubMed  PubMed Central  Google Scholar 

  235. Sigurdsson, E. M., Wisniewski, T. & Frangione, B. Infectivity of amyloid diseases. Trends Mol. Med. 8, 411–413 (2002).

    Article  PubMed  CAS  Google Scholar 

  236. Herukka, S. K. et al. Amyloid-β and tau dynamics in human brain interstitial fluid in patients with suspected normal pressure hydrocephalus. J. Alzheimers Dis. 46, 261–269 (2015).

    Article  PubMed  CAS  Google Scholar 

  237. Croft, C. L. et al. Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures. Cell Death Dis. 8, e2671 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Sigurdsson, E. M. Tau immunotherapy. Neurodegener. Dis. 16, 34–38 (2016).

    Article  PubMed  CAS  Google Scholar 

  239. Yanamandra, K. et al. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann. Clin. Transl Neurol. 2, 278–288 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Kontsekova, E., Zilka, N., Kovacech, B., Skrabana, R. & Novak, M. Identification of structural determinants on tau protein essential for its pathological function: novel therapeutic target for tau immunotherapy in Alzheimer’s disease. Alzheimers Res. Ther. 6, 45 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01850238 (2015).

  242. Novak, P. et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 16, 123–134 (2017).

    Article  PubMed  CAS  Google Scholar 

  243. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02031198 (2017).

  244. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02579252 (2017).

  245. Ondrus, M. & Novak, P. Design of the phase II clinical study of the tau vaccine AADvac1 in patients with mild Alzheimer’s disease. Neurobiol. Aging 39 (Suppl. 1), S26 (2016).

    Article  Google Scholar 

  246. International Clincal Trials Registry Platform. ISRCTN.com http://www.isrctn.com/ISRCTN13033912 (2013).

  247. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02281786 (2016).

  248. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02294851 (2014).

  249. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02460094 (2017).

  250. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02658916 (2018).

  251. [No authors listed.] Biogen licenses phase 2 anti-tau antibody from Bristol-Myers Squibb. Biogen http://media.biogen.com/press-release/corporate/biogen-licenses-phase-2-anti-tau-antibody-bristol-myers-squibb (2017).

  252. West, T. et al. Safety, tolerability and pharmacokinetics of ABBV-8E12, a humanized anti-tau monoclonal antibody, in a Phase I, single ascending dose, placebo-controlled study in subjects with progressive supranuclear palsy. J. Prev. Alzheimers Dis. 3, 285 (2016).

    Google Scholar 

  253. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02985879 (2018).

  254. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02880956 (2018).

  255. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02820896 (2017).

  256. Rogers, M. B. Treating tau: finally, clinical candidates are stepping into the ring. Alzforum http://www.alzforum.org/news/conference-coverage/treating-tau-finally-clinical-candidates-are-stepping-ring (2017).

  257. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02754830 (2018).

  258. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03019536 (2018).

  259. Hayashi, M. L., Lu, J., Driver, D. & Alvarado, A. Antibodies to tau and uses thereof. US Patent US20160251420 A1 (2016).

  260. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03375697 (2018).

  261. Rogers, M. B. To block tau’s proteopathic spread, antibody must attack its mid-region. Alzforum https://www.alzforum.org/news/conference-coverage/block-taus-proteopathic-spread-antibody-must-attack-its-mid-region (2018).

  262. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03464227 (2018).

  263. Congdon, E. E., Krishnaswamy, S. & Sigurdsson, E. M. Harnessing the immune system for treatment and detection of tau pathology. J. Alzheimers Dis. 40 (Suppl.1), S113–S121 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Barthelemy, N. R. et al. differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with lewy bodies. J. Alzheimers Dis. 51, 1033–1043 (2016).

    Article  PubMed  CAS  Google Scholar 

  265. Barthelemy, N. R. et al. Tau protein quantification in human cerebrospinal fluid by targeted mass spectrometry at high sequence coverage provides insights into its primary structure heterogeneity. J. Proteome Res. 15, 667–676 (2016).

    Article  PubMed  CAS  Google Scholar 

  266. Giacobini, E. & Gold, G. Alzheimer disease therapy — moving from amyloid-β to tau. Nat. Rev. Neurol. 9, 677–686 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

E.M.S. was supported by NIH grants R01 NS077239 and R01 AG032611 and a pilot grant from the Michael J. Fox Foundation. E.E.C. was supported by a grant from the Alzheimer’s Association.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to discussion of the content, wrote the article, developed the figures and tables and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Einar M. Sigurdsson.

Ethics declarations

Competing interests

E.M.S. is an inventor on various patents on immunotherapies and related diagnostics that are assigned to New York University. Some of those focusing on the tau protein are licensed to and are being co-developed with H. Lundbeck A/S. E.E.C. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Congdon, E.E., Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14, 399–415 (2018). https://doi.org/10.1038/s41582-018-0013-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0013-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing