Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simulation of asteroid deflection with a megajoule-class X-ray pulse

Abstract

The Chicxulub asteroid impact triggered mass extinction, mega-tsunamis and a spell of global warming that lasted for around 100,000 years. Although the recent Double Asteroid Redirection Test mission by NASA demonstrated that near-Earth objects can be successfully targeted, deflecting the most dangerous asteroids will require energy concentrations akin to nuclear explosions. However, targets suitable for practice missions are scarce. Here we demonstrate the simulation of asteroid deflection with an X-ray pulse from a dense argon plasma generated at the Z machine, a pulsed power device at Sandia National Laboratories. We use so-called X-ray scissors to place surrogate asteroidal material into free space, simultaneously severing supports and vapourizing the target surface. The ensuing explosion accelerates the mock asteroidal material in a scaled asteroid intercept mission. Deflection velocities of around 70 m s–1 for silica targets agree with radiation-hydrodynamic model predictions. We scale these results to proposed interceptor energies and predict that asteroids up to a diameter of (4 ± 1) km can be deflected with this mechanism, showing a viable way to prepare for future planetary defence missions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deflection of mock asteroid using a laboratory X-ray pulse.
Fig. 2: Deflection of mock asteroid using laboratory X-ray pulse.
Fig. 3: Simulation of the mock asteroid deflection experiment.
Fig. 4: Spatial evolution of thermodynamic states near the ablated surface.
Fig. 5: Traverse of quartz through its equation of state during X-ray deflection.

Similar content being viewed by others

Data availability

All data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Titus, T., Robertson, D., Sankey, J. B., Mastin, L. & Rengers, F. A review of common natural disasters as analogs for asteroid impact effects and cascading hazards. Nat. Hazards 116, 1355–1402 (2023).

    Article  Google Scholar 

  2. National Academies of Sciences, Engineering, and Medicine. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032 (The National Academies Press, 2023).

  3. MacLeod, K. G., Quinton, P. C., Sepulveda, J. & Negra, M. H. Postimpact earliest Paleogene warming shown by fish debris oxygen isotopes (El Kef, Tunisia). Science 360, 1467–1469 (2018).

    Article  ADS  Google Scholar 

  4. Range, M. M. et al. The Chicxulub impact produced a powerful global tsunami. AGU Adv. 3, e2021AV000627 (2022).

    Article  ADS  Google Scholar 

  5. Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010).

    Article  ADS  Google Scholar 

  6. Ikenaga, T. et al. A concept of hazardous NEO detection and impact warning system. Acta Astronaut. 156, 284–296 (2019).

    Article  ADS  Google Scholar 

  7. Mathias, D. L., Wheeler, L. F. & Dostson, J. L. A probabilistic asteroid impact risk model: assessment of sub-300 m impacts. Icarus 289, 106–119 (2017).

    Article  ADS  Google Scholar 

  8. Thomas, C. A. et al. Orbital period change of Dimorphos due to the DART kinetic impact. Nature 616, 448–451 (2023).

    Article  ADS  Google Scholar 

  9. Cheng, A. F. et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos. Nature 616, 457–460 (2023).

    Article  ADS  Google Scholar 

  10. Daly, R. T. et al. Successful kinetic impact into an asteroid for planetary defence. Nature 616, 443–447 (2023).

    Article  ADS  Google Scholar 

  11. Barbee, B. W. et al. Options and uncertainties in planetary defense: mission planning and vehicle design for flexible response. Acta Astronaut. 143, 37–61 (2018).

    Article  ADS  Google Scholar 

  12. Wang, Y. R. & Vasile, M. Intelligent selection of NEO deflection strategies under uncertainty. Adv. Space Res. 72, 2676–2688 (2023).

    Article  ADS  Google Scholar 

  13. Dearborn, D. S. P. et al. Options and uncertainties in planetary defense: impulse-dependent response and the physical properties of asteroids. Acta Astronaut. 166, 290–305 (2020).

    Article  ADS  Google Scholar 

  14. Syal, M. B., Dearborn, D. S. P. & Schultz, P. H. Limits on the use of nuclear explosives for asteroid deflection. Acta Astronaut. 90, 103–111 (2013).

    Article  ADS  Google Scholar 

  15. Rivkin, A. S. & Cheng, A. F. Planetary defense with the Double Asteroid Redirection Test (DART) mission and prospects. Nat. Commun. 14, 1003 (2023).

    Article  ADS  Google Scholar 

  16. Witze, A. Asteroid lost 1 million kilograms after spacecraft collision. Nature 615, 195 (2023).

    Article  ADS  Google Scholar 

  17. Woo, T. H. Feasibility study on nuclear propulsion impact on asteroid for planetary space defense (PSD). Rend. Fis. Acc. Lincei 34, 1127–1131 (2023).

    Article  Google Scholar 

  18. Wurden, G. A. et al. A new vision for fusion energy research: fusion rocket engines for planetary defense. J. Fusion Energy 35, 123–133 (2016).

    Article  Google Scholar 

  19. Aristova, E. Y. et al. Laser simulations of the destructive impact of nuclear explosions on hazardous asteroids. J. Exp. Theor. Phys. 126, 132–145 (2018).

    Article  ADS  Google Scholar 

  20. Horan IV, L., Holland, D. E., Bruck Syal, M., Bevins, J. E. & Wasem, J. V. Impact of neutron energy on asteroid deflection performance. Acta Astronaut. 183, 29–42 (2021).

    Article  ADS  Google Scholar 

  21. Shafer, B. P. et al. in Hazards Due to Comets and Asteroids (eds Gehrels, T. G. et al.) 955–1012 (Univ. Arizona Press, 1995).

  22. Vasile, M. & Thiry, N. Nuclear cycler: an incremental approach to the deflection of asteroids. Adv. Space Res. 57, 1805–1819 (2016).

    Article  ADS  Google Scholar 

  23. Burkey, M. T. et al. X-ray energy deposition model for simulating asteroid response to a nuclear planetary defense mitigation mission. Planet. Sci. J. 4, 243 (2023).

    Article  Google Scholar 

  24. Syal, M. B., Owen, J. M. & Miller, P. L. Deflection by kinetic impact: sensitivity to asteroid properties. Icarus 269, 50–61 (2016).

    Article  ADS  Google Scholar 

  25. Baum, S. D. Risk–risk tradeoff analysis of nuclear explosives for asteroid deflection. Risk Anal. 39, 2427–2442 (2019).

    Article  Google Scholar 

  26. Hammerling, P. & Remo, J. L. NEO interactions with nuclear radiation. Acta Astronaut. 36, 377–346 (1995).

    Article  ADS  Google Scholar 

  27. Graninger, D., Stickle, A., Owen, J. M. & Syal, M. Simulating hypervelocity impacts into rubble pile structures for planetary defense. Int. J. Impact Eng. 180, 104670 (2023).

    Article  Google Scholar 

  28. Li, J. et al. Ejecta from the DART-produced active asteroid Dimorphos. Nature 616, 452–456 (2023).

    Article  ADS  Google Scholar 

  29. Solem, J. C. Interception of comets and asteroids on collision course with Earth. J. Spacecr. Rockets 30, 222–228 (1993).

    Article  ADS  Google Scholar 

  30. Haskins, J. B., Stern, E. C., Bauschlicher, C. W. & Lawson, J. W. Thermodynamic and transport properties of meteor melt constituents from ab initio simulations: MgSiO, SiO, and MgO. J. Appl. Phys. 125, 235102 (2019).

    Article  ADS  Google Scholar 

  31. Connolly, J. A. D. Liquid-vapor phase relations in the Si-O system: a calorically constrained van der Waals-type model. J. Geophys. Res. Planets 121, 1641–1666 (2016).

    Article  ADS  Google Scholar 

  32. McCoy, C. A. et al. Measurements of the sound velocity of shock-compressed liquid silica to 1,100 GPa. J. Appl. Phys. 120, 235901 (2016).

    Article  ADS  Google Scholar 

  33. Kraus, R. G. et al. Shock vaporization of silica and the thermodynamics of planetary impact events. J. Geophys. Res. 117, E09009 (2012).

    ADS  Google Scholar 

  34. Hicks, D. G. et al. Dissociation of liquid silica at high pressures and temperatures. Phys. Rev. Lett. 97, 025502 (2006).

    Article  ADS  Google Scholar 

  35. Root, S., Townsend, J. P. & Knudson, M. D. Shock compression of fused silica: an impedance matching. Stand. J. Appl. Phys. 126, 165901 (2021).

    Article  ADS  Google Scholar 

  36. Han, P., He, Q., Chen, X. & Lv, H. Numerical study on asteroid deflection by penetrating explosion based on single-material ALE method and FE-SPH adaptive method. Aerospace 40, 479 (2023).

    Article  Google Scholar 

  37. Melosh, H. J. A hydrocode equation of state for SiO2. Meteorit. Planet. Sci. 42, 2079��2098 (2017).

    Article  ADS  Google Scholar 

  38. González-Cataldo, F., Davis, S. & Gutiérrez, G. Melting curve of SiO2 at multimegabar pressures: implications for gas giants and super-Earths. Sci. Rep. 6, 26537 (2016).

    Article  ADS  Google Scholar 

  39. Remo, J. L., Furnish, M. D. & Lawrence, R. J. Plasma-driven Z-pinch X-ray loading and momentum coupling in meteorite and planetary materials. J. Plasma Phys. 79, 121–141 (2013).

    Article  ADS  Google Scholar 

  40. Stickle, A. M. et al. Effects of impact and target parameters on the results of a kinetic impactor: predictions for the Double Asteroid Redirection Test (DART) Mission. Planet. Sci. J. 3, 248 (2022).

    Article  Google Scholar 

  41. Owen, J. M., DeCoster, M. E., Graninger, D. M. & Raducan, S. D. Spacecraft geometry effects on kinetic impactor missions. Planet. Sci. J. 3, 218 (2022).

    Article  Google Scholar 

  42. Hutchings, I. M. Leonardo da Vinci’s studies of friction. Wear 360, 51–66 (2016).

    Article  Google Scholar 

  43. Stairs, R. K., Schmandt, B., Townsend, J. P. & Wang, R. J. The seismic signature of a high-energy density physics laboratory and its potential for measuring time-dependent velocity structure. Seismol. Res. Lett. 94, 1478–1487 (2023).

    Google Scholar 

  44. Predehl, P. et al. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 588, 227–231 (2020).

    Article  ADS  Google Scholar 

  45. Sinars, D. B. et al. Review of pulsed power-driven high energy density physics research on Z at Sandia. Phys. Plasmas 27, 070501 (2020).

    Article  ADS  Google Scholar 

  46. Kraus, R. G. et al. Impact vaporization of planetesimal cores in the late stages of planet formation. Nat. Geosci. 8, 269–272 (2015).

    Article  ADS  Google Scholar 

  47. Davies, E. J. et al. Silicate melting and vaporization during rocky planet formation. J. Geophys. Res. Planets 125, e2019JE006227 (2020).

    Article  ADS  Google Scholar 

  48. Root, S. et al. Shock response and phase transitions of MgO at planetary impact conditions. Phys. Rev. Lett. 115, 198501 (2015).

    Article  ADS  Google Scholar 

  49. Duffy, T. S. & Smith, R. F. Ultra-high pressure dynamic compression of geological materials. Front. Earth Sci. 7, 23 (2019).

    Article  ADS  Google Scholar 

  50. Jones, B. et al. A renewed capability for gas puff science on Sandia’s Z machine. IEEE Trans. Plasma Sci. 42, 1145–1152 (2013).

    Article  ADS  Google Scholar 

  51. Jones, B. et al. Effect of gradients at stagnation on K-shell X-ray yield in reproducible, high-current, fast Ar gas puff implosions. Phys. Plasmas 22, 020706 (2015).

    Article  ADS  Google Scholar 

  52. Harvey-Thompson, A. J. et al. Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z. Phys. Plasmas 23, 101203 (2016).

    Article  ADS  Google Scholar 

  53. Anders, E. Origin, age, and composition of meteorites. Space Sci. Rev. 3, 583–714 (1964).

    Article  ADS  Google Scholar 

  54. Rubin, A. E. Mineralogy of meteorite groups. Meteorit. Planet. Sci. 32, 231–247 (1997).

    Article  ADS  Google Scholar 

  55. Krot, A. N., Keil, K. & Scott, E. R. D. in Treatise on Geochemistry 2nd edn (eds Turekian, K. K. & Holland, H. D.) 1–63 (Elsevier, 2014).

  56. Stan, C. A. et al. Liquid explosions induced by X-ray laser pulses. Nat. Phys. 12, 966–971 (2016).

    Article  Google Scholar 

  57. Medvedev, A. B. Equation of state of silicon dioxide with allowance for evaporation, dissociation, and ionization. Combust. Explos. Shock Waves 52, 463–475 (2016).

    Article  Google Scholar 

  58. Young, D. A. & Corey, E. M. A new global equation of state model for hot, dense matter. J. Appl. Phys. 78, 3748–3755 (1995).

    Article  ADS  Google Scholar 

  59. Kerley, G. I. Equations of State for Composite Materials Report No. KPS99-4 (Kerley Publishing Services, 1999).

  60. Green, E. C. R., Artacho, E. & Connolly, J. A. D. Bulk properties and near-critical behavior of SiO2 fluid. Earth Planet. Sci. Lett. 491, 11–20 (2018).

    Article  ADS  Google Scholar 

  61. Lock, S. J. et al. The origin of the Moon within a terrestrial synestia. J. Geophys. Res. Planets 123, 910–951 (2018).

    Article  ADS  Google Scholar 

  62. Ahrens, T. J. & Harris, A. W. Deflection and fragmentation of near-Earth asteroids. Nature 360, 429–433 (1992).

    Article  ADS  Google Scholar 

  63. Managan, R. A., Howley, K. M. & Wasem, J. V. Efficient and accurate mapping of nuclear-energy deposition. In Proceedings of the 4th IAA Planetary Defense Conference, AA-PDC-15-P-53 (International Academy of Astronautics, 2015).

  64. McDaniel, D. H. et al. The ZR refurbishment project. In 5th International Conference in Dense Z-pinches, 2002. 651, 23–28 (AIP Conference Proceedings, 2002).

  65. Giuliani, J. L. & Commisso, R. J. A review of the gas-puff Z-pinch as an X-ray and neutron source. IEEE Trans. Plasma Sci. 43, 2385–2453 (2015).

    Article  ADS  Google Scholar 

  66. Krishnan, M. et al. Architecture, implementation, and testing of a multiple-shell gas injection system for high current implosions on the Z accelerator. Rev. Sci. Instrum. 84, 063504 (2013).

    Article  ADS  Google Scholar 

  67. Coleman, P. L. et al. Development and use of a two-dimensional interferometer to measure mass flow from a multi-shell Z-pinch gas puff. Rev. Sci. Instrum. 83, 083116 (2012).

    Article  ADS  Google Scholar 

  68. Jones, M. C. et al. X-ray power and yield measurements at the refurbished Z machine. Rev. Sci. Instrum. 85, 083501 (2014).

    Article  ADS  Google Scholar 

  69. Chandler, G. A. et al. Filtered X-ray diode diagnostics fielded on the Z accelerator for source power measurements. Rev. Sci. Instrum. 70, 561–565 (1999).

    Article  ADS  Google Scholar 

  70. Webb, T. J. et al. Radiation, optical, power flow, and electrical diagnostics at the Z facility: layout and techniques utilized to operate in the harsh environment. Rev. Sci. Instrum. 94, 031102 (2023).

    Article  ADS  Google Scholar 

  71. Peacock, J., Speer, R. J. & Hobby, M. G. Spectra of highly ionized neon and argon in plasma focus discharge. J. Phys. B: Atom. Mol. Phys. 2, 798–810 (1969).

    Article  ADS  Google Scholar 

  72. Sinars, D. B. et al. Compact, rugged in-chamber transmission spectrometer (7-28 keV) for the Sandia Z-facility. Rev. Sci. Instrum. 82, 063113 (2011).

    Article  ADS  Google Scholar 

  73. Moore, N. W. et al. Validation of photothermal ablation models for polyethylene using pulsed X-ray and proton beams. J. Appl. Phys. 132, 235901 (2022).

    Article  ADS  Google Scholar 

  74. Jones, B., Denney, C., Coverdale, C. A., Meyer, C. J. & LePell, P. D. Multilayer mirror monochromatic self-emission X-ray imaging on the Z accelerator. Rev. Sci. Instrum. 77, 10E316 (2006).

    Article  Google Scholar 

  75. Jones, B. et al. Design of a multilayer mirror monochromatic self-emission X-ray imager on the Z accelerator. Rev. Sci. Instrum. 75, 4029–4032 (2004).

    Article  ADS  Google Scholar 

  76. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54, 181–342 (1993).

    Article  ADS  Google Scholar 

  77. MacFarlane, J. J., Golovkin, I. E. & Woodruff, P. R. HELIOS-CR—A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. J. Quant. Spectrosc. Radiat. Transf. 99, 381–397 (2006).

    Article  ADS  Google Scholar 

  78. Wackerle, J. Shock-wave compression of quartz. J. Appl. Phys. 33, 922–937 (1962).

    Article  ADS  Google Scholar 

  79. Kanel, G. I., Razorenov, S. V. & Fortov, V. E. in Shock Compression of Condensed Matter-1991 (eds Schmidt, S. C. et al.) 451–454 (Elsevier, 1992).

  80. Niederhaus, J. H. J. et al. ALEGRA: finite element modeling for shock hydrodynamics and multiphysics. Int. J. Impact Eng. 180, 104693 (2023).

    Article  Google Scholar 

  81. Lorence, L. J. & Beutler, D. E. Radiation Transport Phenomena and Modeling Report No. SAND97-2135 (Sandia National Laboratories, 1997).

  82. Strand, O. T., Goosman, D. R., Martinez, C., Whitworth, T. L. & Kuhlow, W. W. Compact system for high-speed velocimetry using heterodyne techniques. Rev. Sci. Instrum. 77, 083108 (2006).

    Article  ADS  Google Scholar 

  83. Ao, T. & Dolan, D. H. SIRHEN: A Data Reduction Program for Photonic Doppler Velocimetry Measurements Report No. SAND2010-3628 (Sandia National Laboratories, 2010).

  84. Dolan, D. H., Payne, S., Bell, K. S., Fox, B. P. & Moore, N. W. Effects and mitigation of pulsed power radiation on optical fiber velocimetry. Phys. Plasmas 29, 053102 (2022).

    Article  ADS  Google Scholar 

  85. Richet, P., Bottinga, Y., Denielou, L., Petitet, J. P. & Tequi, C. Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetery measurements between 1,000 and 1,800 K and a review from 0 to 2,000 K. Geochim. Cosmochim. Acta 46, 2639–2658 (1982).

    Article  ADS  Google Scholar 

  86. Wagman, D. D. et al. The NBS tables of chemical thermodynamic properties - selected values for inorganic and C-1 and C-2 organic-substances in SI units. J. Phys. Chem. Ref. Data 11 (1982).

  87. Wagman, D. D. et al. Erratum: the NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units [J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982)]. J. Phys. Chem. Ref. Data 18, 1807–1812 (1989).

    Article  ADS  Google Scholar 

  88. Lide, D. R. CRC Handbook of Chemistry and Physics 76th edn (CRC Press, 1995).

  89. Moore, N. W., Sanchez, J. J., Hobbs, M. L., Lane, J. M. D. & Long, K. N. Model for photothermal ionization and molecular recombination during pulsed ablation of polyethylene. J. Appl. Phys. 128, 125902 (2020).

    Article  ADS  Google Scholar 

  90. MacFarlane, J. J. et al. Simulation of the ionization dynamics of aluminum irradiated by intense short-pulse lasers. In Proc. Inertial Fusion and Sciences Applications 457–460 (2003).

  91. Lyon, S. P. & Johnson, J. D. SESAME: The Los Alamos National Laboratory Equation of State Database Report No. LA-UR-92-3407 (Los Alamos National Laboratory, 1992).

  92. Hertel, E. S. & Kerley, G. I. CTH Reference Manual: The Equation of State Package Report No. SAND98-0947 (Sandia National Laboratories, 1998).

  93. More, R. M., Warren, K. H., Young, D. A. & Zimmerman, G. B. A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 3059–3078 (1988).

    Article  ADS  Google Scholar 

  94. Iosilevskiy, I., Gryaznov, V. & Solovev, A. Properties of high-temperature phase diagram and critical point parameters in silica. In Tenth International Workshop on Subsecond Thermophysics 43, 227–241 (High Temperatures-High Pressures, 2014).

Download references

Acknowledgements

We thank M. Abere, P. Codding, A. Harvey-Thompson, D. Johnson, C. Kunka, D. Lamppa, J. Marks, V. Martinez, A. McCourt, R. Obregon, L. Pacheco, S. Payne, R. Schecker, D. Thompson and K. Vigil for experimental support, K. Amodeo, J. Carpenter, D. Dolan, T. Mattsson, J. Niederhaus and S. Payne for useful discussions and the Z machine operations and diagnostic teams. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for the US Department of Energy (DOE) National Nuclear Security Administration (DOE/NNSA) under contract no. DE-NA0003525. This written work is authored by an employee of NTESS. The employee, not NTESS, owns the right, title and interest in and to the written work and is responsible for its contents. Any subjective views or opinions that might be expressed in the written work do not necessarily represent the views of the US Government. The publisher acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this written work or allow others to do so, for US Government purposes. The DOE will provide public access to results of federally sponsored research in accordance with the DOE Public Access Plan.

Author information

Authors and Affiliations

Authors

Contributions

N.W.M. and S.R. conceived the experiment. N.W.M., J.J.S. and C.R.A. designed and developed the experimental apparatus. C.A.M. built the apparatus. N.W.M. and M.-A.S. designed the experiments. M.-A.S. and C.A.M. carried out the experiments. N.W.M. and M.-A.S. processed the data. N.W.M. developed the analytical model. M.M., J.J.S., N.W.M., M.J.P. and K.R.C. developed the finite element models and performed the analysis. N.W.M. and M.M. interpreted the data. N.W.M. and M.-A.S. wrote the paper. All authors contributed to reviewing the manuscript.

Corresponding author

Correspondence to Nathan W. Moore.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Dawn Graninger, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 X-ray spectrum of argon gas puff source.

The main panel shows the measured x-ray spectrum (black) and ±1-σ uncertainty bounds (shaded). The inset shows the spectrum after numerical propagation through the beryllium x-ray filter used in the experiment, that is, incident onto the silica targets, on a linear scale, showing that the spectrum reaching the target predominantly consists of K-shell line emission from the argon plasma.

Source data

Extended Data Fig. 2 Geometry of asteroid deflection scenario.

The figure illustrates the distances and angles used in the derivation of Eq. 7, including cartesian coordinates for the x-ray source at the interceptor position \(\left\{{x}_{0},0\right\},\) maximum tangent intercept \(\left\{x{\prime} ,y{\prime} \right\}\), and local tangent intercept \(\left\{{x}_{I},{y}_{I}\right\}\) at distance \(d\), for an asteroid target with radius \(r\) and stand-off distance \(\Lambda\), and indicated subtended angles. Arrow at right indicates the direction of the target velocity change \(\Delta v\) from the nuclear intercept.

Extended Data Table 1 Dimensions, masses, and densities of target components

Source data

Source Data Fig. 2

Data for Fig. 2.

Source Data Fig. 4

Data for Fig. 4.

Source Data Extended Data Fig. 1

Data for Extended Data Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, N.W., Mesh, M., Sanchez, J.J. et al. Simulation of asteroid deflection with a megajoule-class X-ray pulse. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02633-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02633-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing