Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant orbital magnetic moments and paramagnetic shift in artificial relativistic atoms and molecules

Abstract

Materials such as graphene and topological insulators host massless Dirac fermions that enable the study of relativistic quantum phenomena. Single quantum dots and coupled quantum dots formed with massless Dirac fermions can be viewed as artificial relativistic atoms and molecules, respectively. Such structures offer a unique testbed to study atomic and molecular physics in the ultrarelativistic regime (particle speed close to the speed of light). Here we use a scanning tunnelling microscope to create and probe single and coupled electrostatically defined graphene quantum dots to unravel the magnetic-field responses of artificial relativistic nanostructures. We observe a giant orbital Zeeman splitting and orbital magnetic moment up to ~70 meV T–1 and ~600μB (μB, Bohr magneton) in single graphene quantum dots. For coupled graphene quantum dots, Aharonov–Bohm oscillations and a strong Van Vleck paramagnetic shift of ~20 meV T–2 are observed. Our findings provide fundamental insights into relativistic quantum dot states, which can be potentially leveraged for use in quantum information science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup and orbital Zeeman splitting of GQD states.
Fig. 2: Experimental observation of linear orbital Zeeman splitting.
Fig. 3: Quantum number and gate dependence of magnetic moments of GQD states.
Fig. 4: Paramagnetic shift and AB effect in coupled double GQDs.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Any additional material is available from the corresponding authors upon reasonable request.

Code availability

All the codes used in this Article are available from the corresponding authors upon request.

References

  1. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  2. Katsnelson, M., Novoselov, K. & Geim, A. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2006).

    CAS  Google Scholar 

  3. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).

    CAS  Google Scholar 

  4. Wang, Y. et al. Observing atomic collapse resonances in artificial nuclei on graphene. Science 340, 734–737 (2013).

    CAS  Google Scholar 

  5. Lu, J. et al. Frustrated supercritical collapse in tunable charge arrays on graphene. Nat. Commun. 10, 477 (2019).

    CAS  Google Scholar 

  6. Chen, S. et al. Electron optics with p-n junctions in ballistic graphene. Science 353, 1522–1525 (2016).

    CAS  Google Scholar 

  7. Cheianov, V. V., Fal’ko, V. & Altshuler, B. The focusing of electron flow and a Veselago lens in graphene p-n junctions. Science 315, 1252–1255 (2007).

    CAS  Google Scholar 

  8. Cheianov, V. V. & Fal’ko, V. I. Selective transmission of Dirac electrons and ballistic magnetoresistance of n−p junctions in graphene. Phys. Rev. B 74, 041403 (2006).

    Google Scholar 

  9. Liu, M.-H., Gorini, C. & Richter, K. Creating and steering highly directional electron beams in graphene. Phys. Rev. Lett. 118, 066801 (2017).

    Google Scholar 

  10. Chakraborty, T. Quantum Dots: A Survey of the Properties of Artificial Atoms (Elsevier, 1999).

  11. Reimann, S. M. & Manninen, M. Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283 (2002).

    CAS  Google Scholar 

  12. Kouwenhoven, L. P., Austing, D. & Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 64, 701 (2001).

    CAS  Google Scholar 

  13. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217 (2007).

    CAS  Google Scholar 

  14. Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).

    CAS  Google Scholar 

  15. Zhao, Y. et al. Creating and probing electron whispering-gallery modes in graphene. Science 348, 672–675 (2015).

    CAS  Google Scholar 

  16. Freitag, N. M. et al. Electrostatically confined monolayer graphene quantum dots with orbital and valley splittings. Nano Lett. 16, 5798–5805 (2016).

    CAS  Google Scholar 

  17. Gutiérrez, C., Brown, L., Kim, C.-J., Park, J. & Pasupathy, A. N. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nat. Phys. 12, 1069–1075 (2016).

    Google Scholar 

  18. Lee, J. et al. Imaging electrostatically confined Dirac fermions in graphene quantum dots. Nat. Phys. 12, 1032–1036 (2016).

    CAS  Google Scholar 

  19. Ghahari, F. et al. An on/off Berry phase switch in circular graphene resonators. Science 356, 845–849 (2017).

    CAS  Google Scholar 

  20. Jiang, Y. et al. Tuning a circular p–n junction in graphene from quantum confinement to optical guiding. Nat. Nanotechnol. 12, 1045–1049 (2017).

    CAS  Google Scholar 

  21. Bai, K.-K. et al. Generating atomically sharp p−n junctions in graphene and testing quantum electron optics on the nanoscale. Phys. Rev. B 97, 045413 (2018).

    CAS  Google Scholar 

  22. Freitag, N. M. et al. Large tunable valley splitting in edge-free graphene quantum dots on boron nitride. Nat. Nanotechnol. 13, 392–397 (2018).

    CAS  Google Scholar 

  23. Quezada-López, E. A. et al. Comprehensive electrostatic modeling of exposed quantum dots in graphene/hexagonal boron nitride heterostructures. Nanomaterials 10, 1154 (2020).

    Google Scholar 

  24. Behn, W. A. et al. Measuring and tuning the potential landscape of electrostatically defined quantum dots in graphene. Nano Lett. 21, 5013–5020 (2021).

    CAS  Google Scholar 

  25. Zhang, J., Jiang, Y.-P., Ma, X.-C. & Xue, Q.-K. Berry-phase switch in electrostatically confined topological surface states. Phys. Rev. Lett. 128, 126402 (2022).

    CAS  Google Scholar 

  26. Rodriguez-Nieva, J. F. & Levitov, L. S. Berry phase jumps and giant nonreciprocity in Dirac quantum dots. Phys. Rev. B 94, 235406 (2016).

    Google Scholar 

  27. Ge, Z. et al. Visualization and manipulation of bilayer graphene quantum dots with broken rotational symmetry and nontrivial topology. Nano Lett. 20, 8682–8688 (2020).

    CAS  Google Scholar 

  28. Bethe, H. A. & Salpeter, E. E. Quantum Mechanics of One- and Two-Electron Atoms (Springer Science & Business Media, 2012).

  29. Rinaldi, R. et al. Zeeman effect in parabolic quantum dots. Phys. Rev. Lett. 77, 342 (1996).

    CAS  Google Scholar 

  30. Paskov, P. et al. Magnetoluminescence of highly excited InAs/GaAs self-assembled quantum dots. Phys. Rev. B 62, 7344 (2000).

    CAS  Google Scholar 

  31. Raymond, S. et al. Excitonic energy shell structure of self-assembled InGaAs/GaAs quantum dots. Phys. Rev. Lett. 92, 187402 (2004).

    CAS  Google Scholar 

  32. Ren, Y.-N., Cheng, Q., Sun, Q.-F. & He, L. Realizing valley-polarized energy spectra in bilayer graphene quantum dots via continuously tunable Berry phases. Phys. Rev. Lett. 128, 206805 (2022).

    CAS  Google Scholar 

  33. Tong, C. et al. Tunable valley splitting and bipolar operation in graphene quantum dots. Nano Lett. 21, 1068–1073 (2021).

    CAS  Google Scholar 

  34. Ge, Z. et al. Control of giant topological magnetic moment and valley splitting in trilayer graphene. Phys. Rev. Lett. 127, 136402 (2021).

    CAS  Google Scholar 

  35. Lenz, J. & Edelstein, S. Magnetic sensors and their applications. IEEE Sens. J. 6, 631–649 (2006).

    Google Scholar 

  36. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Google Scholar 

  37. Fu, Z.-Q. et al. Relativistic artificial molecules realized by two coupled graphene quantum dots. Nano Lett. 20, 6738–6743 (2020).

    CAS  Google Scholar 

  38. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Cengage Learning, 1976).

  39. Arimondo, E., Ciampini, D. & Rizzo, C. Chapter one—spectroscopy of natural and artificial atoms in magnetic fields. In Advances In Atomic, Molecular, and Optical Physics 65, 1–66 (Elsevier, 2016).

  40. Ambegaokar, V. & Eckern, U. Coherence and persistent currents in mesoscopic rings. Phys. Rev. Lett. 65, 381 (1990).

    CAS  Google Scholar 

  41. Bleszynski-Jayich, A. et al. Persistent currents in normal metal rings. Science 326, 272–275 (2009).

    CAS  Google Scholar 

  42. Mooij, J. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).

    CAS  Google Scholar 

  43. Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473 (2013).

    CAS  Google Scholar 

  44. Zomer, P., Dash, S., Tombros, N. & Van Wees, B. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011).

    Google Scholar 

  45. Goossens, A. et al. Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank the Hummingbird Computational Cluster team at University of California Santa Cruz for providing computational resources for the numerical TB calculations performed in this work, and M. Hance for providing insight into the accelerator physics considerations related to our experimental findings. J.V.J. and Z.G. acknowledge support from the National Science Foundation under award DMR-1753367. J.V.J. acknowledges support from the Army Research Office under contract W911NF-17-1-0473. V.I.F. and S.S. acknowledge support from the European Graphene Flagship Core 3 Project. V.I.F. acknowledges support from the Lloyd Register Foundation Nanotechnology Grant and EPSRC grants EP/V007033/1, EP/S030719/1 and EP/N010345/1. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, via grant no. JPMXP0112101001 and JSPS KAKENHI via grant no. JP20H00354.

Author information

Authors and Affiliations

Authors

Contributions

Z.G. and J.V.J. conceived the work and designed the research strategy. Z.G. fabricated the samples and performed the data analysis under the supervision of J.V.J. K.W. and T.T. provided the hBN crystals. Z.G. carried out the tunnelling spectroscopy measurements with assistance from P.P. and T.J. under the supervision of D.L. and J.V.J. S.S. developed the interpretation for experimental findings and performed the continuum model calculations under the supervision of V.I.F. Z.G. performed the numerical TB calculations with input from S.S. under the supervision of V.I.F. and J.VJ. Z.G. and J.V.J. wrote the paper. All the authors discussed the paper and commented on the manuscript.

Corresponding authors

Correspondence to Vladimir I. Fal’ko or Jairo Velasco Jr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Raw dI/dVS(VS, B) used to get \({\boldsymbol{d}}^{\boldsymbol{3}}{\boldsymbol{I/dV}}_{\mathbf{S}}^{\boldsymbol{3}}{\boldsymbol{(}} {\boldsymbol{V}}_{\boldsymbol{S}},\,{\boldsymbol{B}} {\boldsymbol{)}}\) plot in Fig. 2d.

dI/dVS (VS, B) taken at d = 40 nm for the same GQD shown in Fig. 2a,b at VG = –16 V. The set point used to acquire the tunneling spectra was I = 1 nA, VS = –60 mV, with a 2 mV ac modulation.

Source data

Extended Data Fig. 2 Deviation between experimental potential well and parabolic potential well.

a, Experimentally measured dI/dVS (VS, d) for the same QD shown in Fig. 2a at VG = −16 V along a line across the center of a circular graphene pn junction. Colored lines are quadratic potential wells with different κ values. The set point used to acquire the tunneling spectra was I = 1 nA, VS = −200 mV, with a 2 mV ac modulation. b, Schematic of the deviation between experimental potential well and parabolic potential well at more negative energies. The experimental potential well deviates from parabolic potential well at more negative energies, and the actual QD radius will be larger than the parabolic potential well. This explains the faster increase of experimentally measured μ than the theoretical values for graphene QDs with a quadratic potential well.

Source data

Extended Data Fig. 3 \({\boldsymbol{d}}^{\boldsymbol{3}}{\boldsymbol{I/dV}}_{\boldsymbol{S}}^{\boldsymbol{3}}{\boldsymbol{(}} {\boldsymbol{V}}_{\boldsymbol{S,}}\,{\boldsymbol{B}} {\boldsymbol{)}}\) plot at different VG.

a, \(d^3I/dV_S^3\left( {V_S,B} \right)\) at VG = −24 V and at d = 36 nm. b, \(d^3I/dV_S^3\left( {V_S,B} \right)\) at VG = −20 V and at d = 40 nm. c, \(d^3I/dV_S^3\left( {V_S,B} \right)\) at VG = −10 V and at d = 36 nm. d, \(d^3I/dV_S^3(V_S,B)\) at VG = 0 V and at d = 25 nm. The quantum number (n,m) in (a–d) corresponds to radial and angular quantum number, respectively.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Sections 1–14.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Z., Slizovskiy, S., Polizogopoulos, P. et al. Giant orbital magnetic moments and paramagnetic shift in artificial relativistic atoms and molecules. Nat. Nanotechnol. 18, 250–256 (2023). https://doi.org/10.1038/s41565-023-01327-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01327-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing