Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss

Abstract

Mutations in PINK1 and PARK2 cause autosomal recessive parkinsonism, a neurodegenerative disorder that is characterized by the loss of dopaminergic neurons. To discover potential therapeutic pathways, we identified factors that genetically interact with Drosophila park and Pink1. We found that overexpression of the translation inhibitor Thor (4E-BP) can suppress all of the pathologic phenotypes, including degeneration of dopaminergic neurons in Drosophila. 4E-BP is activated in vivo by the TOR inhibitor rapamycin, which could potently suppress pathology in Pink1 and park mutants. Rapamycin also ameliorated mitochondrial defects in cells from individuals with PARK2 mutations. Recently, 4E-BP was shown to be inhibited by the most common cause of parkinsonism, dominant mutations in LRRK2. We also found that loss of the Drosophila LRRK2 homolog activated 4E-BP and was also able to suppress Pink1 and park pathology. Thus, in conjunction with recent findings, our results suggest that pharmacologic stimulation of 4E-BP activity may represent a viable therapeutic approach for multiple forms of parkinsonism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 4E-BP overexpression suppresses park and Pink1 locomotor deficits and muscle degeneration.
Figure 2: Overexpression of 4E-BP can suppress degeneration of dopaminergic neurons in park and Pink1 mutants.
Figure 3: Post-translational state of 4E-BP activity in park and Pink1 mutants.
Figure 4: Pharmacological suppression of park and Pink1 mutant phenotypes by rapamycin.
Figure 5: Rapamycin rescues mitochondrial defects in park-deficient Drosophila and PARK2-deficient human cells.
Figure 6: Rapamycin suppression of park and Pink1 phenotypes is dependent on 4E-BP, but does not require autophagy.
Figure 7: GstS1 levels are increased by 4E-BP activation.
Figure 8: Loss of Drosophila LRRK increases the amount hypo-phosphorylated 4E-BP and partially suppresses park and Pink1 mutant phenotypes.

Similar content being viewed by others

References

  1. Abou-Sleiman, P.M., Muqit, M.M. & Wood, N.W. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat. Rev. Neurosci. 7, 207–219 (2006).

    Article  CAS  Google Scholar 

  2. Farrer, M.J. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet. 7, 306–318 (2006).

    Article  CAS  Google Scholar 

  3. Clark, I.E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006).

    Article  CAS  Google Scholar 

  4. Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 (2006).

    Article  CAS  Google Scholar 

  5. Yang, Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. USA 103, 10793–10798 (2006).

    Article  CAS  Google Scholar 

  6. Exner, N. et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci. 27, 12413–12418 (2007).

    Article  CAS  Google Scholar 

  7. Whitworth, A.J., Wes, P.D. & Pallanck, L.J. Drosophila models pioneer a new approach to drug discovery for Parkinson's disease. Drug Discov. Today 11, 119–126 (2006).

    Article  CAS  Google Scholar 

  8. Whitworth, A.J. et al. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin. Dis. Model Mech. 1, 168–174 (2008).

    Article  CAS  Google Scholar 

  9. Tain, L.S. et al. Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death Differ. 16, 1118–1125 (2009).

    Article  CAS  Google Scholar 

  10. Poole, A.C. et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl. Acad. Sci. USA 105, 1638–1643 (2008).

    Article  CAS  Google Scholar 

  11. Yang, Y. et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc. Natl. Acad. Sci. USA 105, 7070–7075 (2008).

    Article  CAS  Google Scholar 

  12. Mortiboys, H. et al. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann. Neurol. 64, 555–565 (2008).

    Article  CAS  Google Scholar 

  13. Greene, J.C., Whitworth, A.J., Andrews, L.A., Parker, T.J. & Pallanck, L.J. Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum. Mol. Genet. 14, 799–811 (2005).

    Article  CAS  Google Scholar 

  14. Clemens, M.J. Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. J. Cell. Mol. Med. 5, 221–239 (2001).

    Article  CAS  Google Scholar 

  15. Holcik, M. & Sonenberg, N. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 6, 318–327 (2005).

    Article  CAS  Google Scholar 

  16. Richter, J.D. & Sonenberg, N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433, 477–480 (2005).

    Article  CAS  Google Scholar 

  17. Gingras, A.C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    Article  CAS  Google Scholar 

  18. Gingras, A.C., Raught, B. & Sonenberg, N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 15, 807–826 (2001).

    Article  CAS  Google Scholar 

  19. Wullschleger, S., Loewith, R. & Hall, M.N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    Article  CAS  Google Scholar 

  20. Bernal, A. & Kimbrell, D.A. Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity. Proc. Natl. Acad. Sci. USA 97, 6019–6024 (2000).

    Article  CAS  Google Scholar 

  21. Kapahi, P. et al. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr. Biol. 14, 885–890 (2004).

    Article  CAS  Google Scholar 

  22. Teleman, A.A., Chen, Y.W. & Cohen, S.M. 4E-BP functions as a metabolic brake used under stress conditions, but not during normal growth. Genes Dev. 19, 1844–1848 (2005).

    Article  CAS  Google Scholar 

  23. Tettweiler, G., Miron, M., Jenkins, M., Sonenberg, N. & Lasko, P.F. Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev. 19, 1840–1843 (2005).

    Article  CAS  Google Scholar 

  24. Yamaguchi, S. et al. ATF4-mediated induction of 4E-BP1 contributes to pancreatic beta cell survival under endoplasmic reticulum stress. Cell Metab. 7, 269–276 (2008).

    Article  CAS  Google Scholar 

  25. Holcik, M., Sonenberg, N. & Korneluk, R.G. Internal ribosome initiation of translation and the control of cell death. Trends Genet. 16, 469–473 (2000).

    Article  CAS  Google Scholar 

  26. Imai, Y. et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J. 27, 2432–2443 (2008).

    Article  CAS  Google Scholar 

  27. Whitworth, A.J. et al. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc. Natl. Acad. Sci. USA 102, 8024–8029 (2005).

    Article  CAS  Google Scholar 

  28. Puig, O., Marr, M.T., Ruhf, M.L. & Tjian, R. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev. 17, 2006–2020 (2003).

    Article  CAS  Google Scholar 

  29. Southgate, R.J. et al. FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle. J. Biol. Chem. 282, 21176–21186 (2007).

    Article  CAS  Google Scholar 

  30. Murphy, C.T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283 (2003).

    Article  CAS  Google Scholar 

  31. McElwee, J.J. et al. Evolutionary conservation of regulated longevity assurance mechanisms. Genome Biol. 8, R132 (2007).

    Article  Google Scholar 

  32. Giannakou, M.E. et al. Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305, 361 (2004).

    Article  CAS  Google Scholar 

  33. Hwangbo, D.S., Gershman, B., Tu, M.P., Palmer, M. & Tatar, M. Drosophila dFOXO controls lifespan and regulates insulin signaling in brain and fat body. Nature 429, 562–566 (2004).

    Article  CAS  Google Scholar 

  34. Beretta, L., Gingras, A.C., Svitkin, Y.V., Hall, M.N. & Sonenberg, N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 15, 658–664 (1996).

    Article  CAS  Google Scholar 

  35. Brunn, G.J. et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277, 99–101 (1997).

    Article  CAS  Google Scholar 

  36. Burnett, P.E., Barrow, R.K., Cohen, N.A., Snyder, S.H. & Sabatini, D.M. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl. Acad. Sci. USA 95, 1432–1437 (1998).

    Article  CAS  Google Scholar 

  37. Gloeckner, C.J. et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum. Mol. Genet. 15, 223–232 (2006).

    Article  CAS  Google Scholar 

  38. West, A.B. et al. Parkinson's disease–associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. USA 102, 16842–16847 (2005).

    Article  CAS  Google Scholar 

  39. Gingras, A.C. et al. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 15, 2852–2864 (2001).

    Article  CAS  Google Scholar 

  40. Müftüoglu, M. et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov. Disord. 19, 544–548 (2004).

    Article  Google Scholar 

  41. King, M.A. et al. Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis. Mol. Pharmacol. 73, 1052–1063 (2008).

    Article  CAS  Google Scholar 

  42. Wyttenbach, A., Hands, S., King, M.A., Lipkow, K. & Tolkovsky, A.M. Amelioration of protein misfolding disease by rapamycin: translation or autophagy? Autophagy 4, 542–545 (2008).

    Article  CAS  Google Scholar 

  43. Scott, R.C., Schuldiner, O. & Neufeld, T.P. Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev. Cell 7, 167–178 (2004).

    Article  CAS  Google Scholar 

  44. Levine, B. & Klionsky, D.J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463–477 (2004).

    Article  CAS  Google Scholar 

  45. Singh, S.P., Coronella, J.A., Benes, H., Cochrane, B.J. & Zimniak, P. Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. Eur. J. Biochem. 268, 2912–2923 (2001).

    Article  CAS  Google Scholar 

  46. Li, Y. et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson's disease. Nat. Neurosci. 12, 826–829 (2009).

    Article  CAS  Google Scholar 

  47. Greene, J.C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 100, 4078–4083 (2003).

    Article  CAS  Google Scholar 

  48. Jünger, M.A. et al. The Drosophila forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J. Biol. 2, 20 (2003).

    Article  Google Scholar 

  49. Miron, M. et al. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signaling and cell growth in Drosophila. Nat. Cell Biol. 3, 596–601 (2001).

    Article  CAS  Google Scholar 

  50. De Vos, K.J. & Sheetz, M.P. Visualization and quantification of mitochondrial dynamics in living animal cells. Methods Cell Biol. 80, 627–682 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank L. Pallanck, P. Ingham and L. Partridge for critical reading of the manuscript and discussions. We would also like to thank J. Chung, S. Birman, L. Partridge, N. Sonenberg and T. Neufeld for Drosophila lines, H. Beneš for the antibody to GstS1 and I. Bjedov for Atg5 qPCR primer sequences. We also acknowledge the Department of Biomedical Science Centre for Electron Microscopy for technical assistance. This work was supported by grants from the Parkinson's Disease Society UK (G-4063 and G-0713 to A.J.W. and G-0715 to O.B.) and the Royal Society and Wellcome Trust (081987) to A.J.W. The MRC Centre for Developmental and Biomedical Genetics is supported by grant G070091. The Wellcome Trust (grant number GR077544AIA) supports the Light Microscopy Facility.

Author information

Authors and Affiliations

Authors

Contributions

L.S.T., H.M., R.N.T., E.Z. and A.J.W. designed and conducted the experiments and analyzed the data. L.S.T. and A.J.W. prepared the figures and wrote the manuscript. A.J.W. and O.B. supervised the project, and contributed to experimental design and data analysis.

Corresponding author

Correspondence to Alexander J Whitworth.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 1686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tain, L., Mortiboys, H., Tao, R. et al. Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 12, 1129–1135 (2009). https://doi.org/10.1038/nn.2372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2372

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing