Skip to main content
Log in

A Unified Mechanism for Spontaneous-Rate and First-Spike Timing in the Auditory Nerve

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Recent physiological experiments have provided detailed descriptions of the properties of first-spike latency and variability in auditory cortex and nerve in response to pure tones with different envelopes. The envelope-dependence of first-spike timing and precision in auditory cortical neurons appears to reflect properties established in the nerve. First-spike latency properties in individual auditory nerve fibers are strongly correlated with their spontaneous rate (SR). It is shown here that a minimal, plausible model of auditory transduction with two free parameters accurately reproduces the physiological data from the auditory nerve population. The model consists of a simple gain stage, a bandpass filter, a rectifying saturating non-linearity, and a lowpass filter in series. The output of the lowpass filter drives an inhomogeneous Poisson process. The shape of the non-linearity is determined by SR; in physiological terms, this shape depends upon the resting sensitivity of the synapse between the inner hair cell and the auditory nerve. An alternative model for SR generation, where SR is added to the stimulus-driven output of a fixed nonlinearity, fails to account for the data. The results provide a novel, comprehensive and physiologically-based explanation for the range of experimental results on the envelope-dependence of first-spike latency and precision, and its relationship with SR, in the auditory system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anzai A, Ohzawa I, Freeman RD (2001) Joint-encoding of motion and depth by visual cortical neurons: Neural basis of the Pulfrich effect. Nat. Neurosci. 4: 513–518.

    Google Scholar 

  • Bair W (1999) Spike timing in the mammalian visual system. Curr. Opin. Neurobiol. 9: 447–453.

    Google Scholar 

  • Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc. Natl. Acad. Sci. USA 94: 5411–5416.

    Google Scholar 

  • Beutner D, Voets T, Neher E, Moser T (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29: 681–690.

    Google Scholar 

  • Brugge JF, Reale RA, Hind JE (1996) The structure of spatial receptive fields of neurons in primary auditory cortex of the cat. J. Neurosci. 16: 4420–4437.

    Google Scholar 

  • Brunel N, Chance FS, Fourcaud N, Abbott LF (2001) Effects of synaptic noise and filtering on the frequency response of spiking neurons. Phys. Rev. Lett. 86: 2186–2189.

    Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J. Acoust. Soc. Am. 93: 401–417.

    Google Scholar 

  • Cecchi GA, Sigman M, Alonso JM, Martinez L, Chialvo DR, Magnasco MO (2000) Noise in neurons is message dependent. Proc. Natl. Acad. Sci. USA 97: 5557–5561.

    Google Scholar 

  • Cooper NP, Robertson D, Yates GK (1993) Cochlear nerve fiber responses to amplitude-modulated stimuli: Variations with spontaneous rate and other response characteristics. J. Neurophysiol. 70: 370–386.

    Google Scholar 

  • Daley D, Vere-Jones D (1988) An Introduction to the Theory of Point Processes. Springer, Berlin.

    Google Scholar 

  • Dallos P, Cheatham MA (1989) Nonlinearities in cochlear receptor potentials and their origins. J. Acoust. Soc. Am. 86: 1790–1796.

    Google Scholar 

  • David EE, Guttman N, VanBergeijk WA (1959) Binaural interaction of high-frequency complex stimuli. J. Acoust. Soc. Am. 31: 774–782.

    Google Scholar 

  • Eggermont JJ (1998) Azimuth coding in primary auditory cortex of the cat. II. Relative latency and interspike interval representation. J. Neurophysiol. 80: 2151–2161.

    Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Hill-Fay Associates, Winnetka, IL.

    Google Scholar 

  • Fishbach A, Nelken I, Yeshurun Y (2001) Auditory edge detection: A neural model for physiological and psychoacoustical responses to amplitude transients. J. Neurophysiol. 85: 2303–2323.

    Google Scholar 

  • Furukawa S, Xu L, Middlebrooks JC (2000) Coding of sound-source location by ensembles of cortical neurons. J. Neurosci. 20: 1216–1228.

    Google Scholar 

  • Gaumond RP, Kim DO, Molnar CE (1983) Response of cochlear nerve fibers to brief acoustic stimuli: Role of discharge-history effects. J. Acoust. Soc. Am. 74: 1392–1398.

    Google Scholar 

  • Gawne TJ, Kjaer TW, Richmond BJ (1996) Latency: Another potential code for feature binding in striate cortex. J. Neurophysiol. 76: 1356–1360.

    Google Scholar 

  • Geisler CD, Deng L, Greenberg SR (1985) Thresholds for primary auditory fibers using statistically defined criteria. J. Acoust. Soc. Am. 77: 1102–1109.

    Google Scholar 

  • Glasberg BR, Moore BC (1990) Derivation of auditory filter shapes from notched-noise data. Hear. Res. 47: 103–138.

    Google Scholar 

  • Hafter ER, Carrier SC (1972) Binaural interaction in low-frequency stimuli: The inability to trade time and intensity completely. J. Acoust. Soc. Am. 51: 1852–1862.

    Google Scholar 

  • Heffner RS, Heffner HE (1985) Hearing range of the domestic cat. Hear. Res. 19: 85–88.

    Google Scholar 

  • Heil P (1997a) Auditory cortical onset responses revisited. I. Firstspike timing. J. Neurophysiol. 77: 2616–2641.

    Google Scholar 

  • Heil P (1997b) Auditory cortical onset responses revisited. II. Response strength. J. Neurophysiol. 77: 2642–2660.

    Google Scholar 

  • Heil P, Irvine DR (1996) On determinants of first-spike latency in auditory cortex. Neuroreport. 7: 3073–3076.

    Google Scholar 

  • Heil P, Irvine DR (1997) First-spike timing of auditory-nerve fibers and comparison with auditory cortex. J. Neurophysiol. 78: 2438–2454.

    Google Scholar 

  • Heil P, Irvine DR (1998) The posterior field P of cat auditory cortex: Coding of envelope transients. Cereb. Cortex. 8: 125–141.

    Google Scholar 

  • Heil P, Neubauer H (2001) Temporal integration of sound pressure determines thresholds of auditory-nerve fibers. J. Neurosci. 21: 7404–7415.

    Google Scholar 

  • Henry KR, Lewis ER (1992) One-tone suppression in the cochlear nerve of the gerbil. Hear. Res. 63: 1–6.

    Google Scholar 

  • Hewitt MJ, Meddis R (1991) An evaluation of eight computer models of mammalian inner hair-cell function. J. Acoust. Soc. Am. 90: 904–917.

    Google Scholar 

  • Ho N, Destexhe A (2000) Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J. Neurophysiol. 84: 1488–1496.

    Google Scholar 

  • Hopfield JJ (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376: 33–36.

    Google Scholar 

  • Horst JW, Javel E, Farley GR (1990) Coding of spectral fine structure in the auditory nerve. II. Level-dependent nonlinear responses. J. Acoust. Soc. Am. 88: 2656–2681.

    Google Scholar 

  • Johnson DH (1978) The relationship of post-stimulus time and interval histograms to the timming characteristics of spike trains. Biophys. J. 22: 413–430.

    Google Scholar 

  • Johnson DH (1996) Point process models of single-neuron discharges. J. Comput. Neurosci. 3: 275–299.

    Google Scholar 

  • Joris PX, Smith PH, Yin TC (1998) Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21: 1235–1238.

    Google Scholar 

  • Kitzes LM, Gibson MM, Rose JE, Hind JE (1978) Initial discharge latency and threshold considerations for some neurons in cochlear nuclear complex of the cat. J. Neurophysiol. 41: 1165–1182.

    Google Scholar 

  • Klug A, Khan A, Burger RM, Bauer EE, Hurley LM, Yang L, Grothe B,Halvorsen MB, Park TJ (2000) Latency as a function of intensity in auditory neurons: Influences of central processing. Hear. Res. 148: 107–123.

    Google Scholar 

  • Krishna BS, Semple MN (2000) Auditory temporal processing: Responses to sinusoidally amplitude-modulated tones in the inferior colliculus. J. Neurophysiol. 84: 255–273.

    Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J. Acoust. Soc. Am. 63: 442–455.

    Google Scholar 

  • Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216: 1239–1241.

    Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: Quantitative analysis with light and electron microscopy. J. Comp. Neurol. 301: 443–460.

    Google Scholar 

  • Lowen SB, Teich MC (1992) Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales. J. Acoust. Soc. Am. 92: 803–806.

    Google Scholar 

  • Mason AC, Oshinsky ML, Hoy RR (2001) Hyperacute directional hearing in a microscale auditory system. Nature 410: 686–690.

    Google Scholar 

  • Maunsell JH, Ghose GM, Assad JA, McAdams CJ, Boudreau CE, Noerager BD (1999) Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis. Neurosci. 16: 1–14.

    Google Scholar 

  • Merchan-Perez A, Liberman MC (1996) Ultrastructural differences among afferent synapses on cochlear hair cells: Correlations with spontaneous discharge rate. J. Comp. Neurol. 371: 208–221.

    Google Scholar 

  • Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc. Natl. Acad. Sci. USA 97: 883–888.

    Google Scholar 

  • Mountcastle VB, Davies PW, Berman AL (1957) Response properties of neurons of cats somatic sensory cortex to peripheral stimuli. J. Neurophysiol. 20: 374–407.

    Google Scholar 

  • Neff W, Hind J (1955) Auditory thresholds of the cat. J. Acoust. Soc. Am. 27: 480–483.

    Google Scholar 

  • Oxenham AJ, Plack CJ (2000) Effects of masker frequency and duration in forward masking: Further evidence for the influence of peripheral nonlinearity. Hear. Res. 150: 258–266.

    Google Scholar 

  • Panzeri S, Petersen RS, Schultz SR, Lebedev M, Diamond ME (2001) The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron 29: 769–777.

    Google Scholar 

  • Patterson R, Nimmo-Smith I, Holdsworth J, Rice P (1988) Implementing a gammatone filter bank. SVOS Final Report, The Auditory Filter Bank.

  • Phillips DP, Hall SE (1990) Response timing constraints on the cortical representation of sound time structure. J. Acoust. Soc. Am. 88: 1403–1411.

    Google Scholar 

  • Rajan R, Irvine DR, Cassell JF (1991) Normative N1 audiogram data for the barbiturate-anaesthetised domestic cat. Hear. Res. 53: 153–158.

    Google Scholar 

  • Reich DS, Mechler F, Victor JD (2001) Temporal coding of contrast in primary visual cortex: When, what, and why. J. Neurophysiol. 85: 1039–1050.

    Google Scholar 

  • Rhode WS, Recio A (2000) Study of mechanical motions in the basal region of the chinchilla cochlea. J. Acoust. Soc. Am. 107: 3317–3332.

    Google Scholar 

  • Rhode WS, Smith PH (1985) Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hear. Res. 18: 159–168.

    Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek B (1997) Spikes: Exploring the neural code. MIT Press, Cambridge, MA.

    Google Scholar 

  • Rosowski JJ (1991) The effects of external-and middle-ear filtering on auditory threshold and noise-induced hearing loss. J. Acoust. Soc. Am. 90: 124–135.

    Google Scholar 

  • Sachs MB (1984) Neural coding of complex sounds: Speech. Annu. Rev. Physiol. 46: 261–273.

    Google Scholar 

  • Sachs MB, Winslow RL, Sokolowski BH (1989) A computational model for rate-level functions from cat auditory-nerve fibers. Hear. Res. 41: 61–69.

    Google Scholar 

  • Shamma SA, Chadwick RS, Wilbur WJ, Morrish KA, Rinzel J (1986) Abiophysical model of cochlear processing: Intensity dependence of pure tone responses. J. Acoust. Soc. Am. 80: 133–145.

    Google Scholar 

  • Smith RL, Brachman ML (1980) Operating range and maximum response of single auditory nerve fibers. Brain. Res. 184: 499–505.

    Google Scholar 

  • Snyder DL, Miller MI (1991) Random Point Processes in Time and Space. Springer-Verlag, New York.

    Google Scholar 

  • Stein RB (1967) Some models of neuronal variability. Biophys. J. 7: 37–68.

    Google Scholar 

  • Van Rossum MC (2001) The transient precision of integrate and fire neurons: Effect of background activity and noise. J. Comput. Neurosci. 10: 303–311.

    Google Scholar 

  • Warzecha A, Egelhaaf M (2000) Response latency of a motionsensitive neuron in the fly visual system: Dependence on stimulus parameters and physiological conditions. Vision Res. 40: 2973–2983.

    Google Scholar 

  • Weiss TF, Rose C (1988) A comparison of synchronization filters in different auditory receptor organs. Hear. Res. 33: 175–179.

    Google Scholar 

  • Yates GK (1991) Auditory-nerve spontaneous rates vary predictably with threshold. Hear. Res. 57: 57–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishna, B.S. A Unified Mechanism for Spontaneous-Rate and First-Spike Timing in the Auditory Nerve. J Comput Neurosci 13, 71–91 (2002). https://doi.org/10.1023/A:1020116122533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020116122533

Navigation