Skip to main content
Log in

Optimal Control for Irreversible Processes in Thermodynamics and Microeconomics

  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Publications on optimal control of irreversible thermodynamic processes are reviewed. Analogies between irreversible processes in thermodynamics and microeconomics are stated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Orlov, V.N. and Rudenko, A.V., Optimal Control for the Limiting Performance of Irreversible Thermodynamic Processes (A Review), Avtom. Telemekh., 1985, no. 5, pp. 7–41.

  2. Haywood, R.W., Equilibrium Thermodynamics for Engineers and Scientists, New York: Wiley, 1980. Translated under the title Termodinamika ravnovesnykh protsessov, Moscow: Mir, 1983.

    Google Scholar 

  3. Chen, L., Wu, C., and Sun, F., Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems, J. Non-Equilib. Thermodyn., 1999, vol. 24, pp. 327–359.

    Google Scholar 

  4. Gyftopoulos, E.P. and Beretta, G.P., New Developments in Thermodynamics, J. Jpn. Soc. Mech. Engrs., 1993, vol. 96, pp. 892.

  5. Hoffmann, K.H., Burzler, J.M., and Schubert, S., Endoreversible Thermodynamics, Energy Convers. Managm., 1997.

  6. Salamon, P., Nitzan, A., Andresen, B., et al., Minimum Entropy Production and the Optimization of Heat Engines, Phys. Rev. A., 1980, vol. 21, pp. 2115–2129.

    Google Scholar 

  7. Mironova, V.A., Amel'kin, S.A., and Tsirlin, A.M., Matematicheskie metody termodinamiki pri konechnom vremeni (Mathematical Methods of Finite-Time Thermodynamics), Moscow: Khimiya, 2000.

    Google Scholar 

  8. Andresen, B., Finite-Time Thermodynamics, Copenhagen, 1983.

  9. Bejan, A., Entropy Generation Minimization, Boca Raton: CRC, 1996.

    Google Scholar 

  10. Berry, R.S., Kazakov, V.A., Sieniutycz, S., et al., Thermodynamic Optimization of Finite Time Processes, Chichester: Wiley, 1999.

    Google Scholar 

  11. De Vos, A., Endoreversible Thermodynamics of Solar Energy Conversion, Oxford: Oxford Univ. Press, 1992.

    Google Scholar 

  12. Pospelov, I.G., Dinamicheskoe opisanie kollektivnogo povedeniya na rynke. Matematicheskoe modelirovanie: metody opisaniya i issledovaniya slozhnykh sistem (A Dynamic Description of the Collective Behavior at Market. Mathematical Modeling: Methods of Description and Investigation of Complex Systems), Samarskii, A.A., Moiseev, N.N., and Petrov, A.A., Eds., Moscow: Nauka, 1989.

    Google Scholar 

  13. Lichnerowicz, M., Un modele d'echange economique (economie et thermodynamique), Ann. l'Institut Henri Poincare, 1970, no. 2.

  14. Lichnerowicz, M. and Lichnerowicz, A., Economie et thermodynamique: un modele dechange economique, Economies et Societes, 1971, vol. 5.

  15. Mirowski, P., More Heat than Light. Economics as Social Physics, Physics as Nature's Economics. Historical Perspectives on Modern Economics, Cambridge: Cambridge Univ. Press, 1989.

    Google Scholar 

  16. Samuelson, P.A., Maximum Principle in Analytical Economics, Am. Econ. Rev., 1972. vol. 2, pp. 249–262.

    Google Scholar 

  17. Kuznetsov, A.G., Rudenko, A.V., and Tsirlin, A.M., Optimal Control in Thermodynamic Systems with Finite-Capacity Sources, Avtom. Telemekh., 1985, no. 6, pp. 56–62.

  18. Andresen, B. and Gordon, J.M., Optimal Heating and Cooling Strategies for Heat Exchanges Design, J. Appl. Phys., 1992, no. 1, pp. 71–78.

  19. Bejan, A., Entropy Generation Minimization: The New Thermodynamics of Finite Size Devices and Finite Time Process, J. Appl. Phys., 1996, vol. 79, pp. 1191–1218.

    Google Scholar 

  20. Spirkl, W. and Ries, H., Optimal Finite-Time Endoreversible Processes, Phys. Rev. E., 1995, vol. 52, no. 4, pp. 3455–3459.

    Google Scholar 

  21. Tsirlin, A.M., Mironova, V.A., Amelkin S.A., et al., Finite-Time Thermodynamics: Conditions of Minimal Dissipation for Thermodynamic Processes with Given Rate, Phys. Rev. E., 1998, vol. 58, no. 1.

  22. Salamon, P., Physics versus Engineering of Finite-Time Thermodynamic Models and Optimizations, in Thermodynamic Optimization of Complex Energy Systems, Bejan, A. and Mamut, E., Eds., Dordrecht: Kluwer, 1999, pp. 421–424.

    Google Scholar 

  23. Tsirlin, A.M., Optimal Control of Irreversible Heat and Mass Transfer Processes, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1991, no. 2, pp. 81–86.

  24. Tsirlin, A.M., Kazakov, V.A., and Berry, R.S., Finite-Time Thermodynamics: Limiting Performance of Rectification and Minimal Entropy Production in Mass Transfer, J. Phys. Chem., 1994, no. 98, pp. 3330–3336.

  25. Mironova, V.A., Thermodynamic Optimization of Chemical Processes, Khim. Prom., 1991, no. 1, pp. 54–56.

  26. Mironova, V.A., Tsirlin, A.M., Andersen, B., et al., Produced Entropy as a Criterion for the Optimality of Chemical Technological Processes, Khim. Prom., 1996, no. 5, pp. 299–303.

  27. Tsirlin, A.M., Mironova, V.A., and Amel'kin, S.A., Minimal Dissipation Processes, Teor. Osnovy Khim. Tekh., 1997, vol. 31, no. 6, pp. 649–658.

    Google Scholar 

  28. Orlov, V.N. and Rozonoer, L.I., Estimation of the Effectiveness of Controlled Thermodynamic Processes from Energy and Entropy Balance Equations, X Vsesoyuz. Soveshch. Prob. Upravlen., Moscow: Nauka, 1986.

    Google Scholar 

  29. Tolman, R.C. and Fine, P.C., On the Irreversible Production of Entropy, Rev. Mod. Phys., 1948, vol. 20, no. 1, pp. 51–77.

    Google Scholar 

  30. Novikov, I.I., The Efficiency of Atomic Power Stations, Atom. Energ., 1957, vol. 3, no. 11, p. 409.

  31. Curzon, F.L. and Ahlborn, B., Efficiency of a Carnot Engine at Maximum Power Output, Am. J. Phys., 1975, vol. 43, pp. 22–24.

    Google Scholar 

  32. Chen, J., Yan, Z., Lin, G., et al., On the Curzon-Ahlborn Efficiency and Its Connection with the Efficiencies of Real Heat Engines, Energy Convers. Managm., 2001, vol. 42, pp. 173–181.

    Google Scholar 

  33. Gordon, J.M., On Optimized Solar-Driven Heat Engines, Solar Energy, 1988, vol. 40, no. 1.

  34. Angulo-Brown, F. and Paez-Hernandez, R., Endoreversible Thermal Cycle with a Nonlinear Heat Transfer Law, J. Appl. Phys., 1993, vol. 74, pp. 2216–2219.

    Google Scholar 

  35. Chen, J. and Yan, Z., Optimal Performance of Endoreversible Cycles for Another Linear Heat Transfer Law, J. Phys. D: Appl. Phys., 1993, vol. 26, pp. 1581–1586.

    Google Scholar 

  36. Chen, W.Z., Sun, F.R., Cheng, S.M., et al., Study on Optimal Performance and Working Temperatures of Endoreversible Forward and Reverse Carnot Cycles, Int. J. Energy Res., 1995, vol. 19, p. 751.

  37. Nulton, J.D., Salamon, P., and Pathria, R.K., Carnot-Like Processes in Finite Time. I. Theoretical Limits, Am. J. Phys., 1993, vol. 61, pp. 911–916.

    Google Scholar 

  38. Orlov, V.N., Optimal Irreversible Carnot Cycle Containing Three Isotherms, Sov. Phys. Rep., 1985, vol. 30, pp. 506–508.

    Google Scholar 

  39. De Mey, G. and De Vos, A., On the Optimum Efficiency of Endoreversible Thermodynamic Processes, J. Phys D: Appl. Phys., 1994, vol. 27, p. 736.

  40. Rubin, M.H. and Andresen, B., Optimal Staging of Endoreversible Heat Engines, J. Appl. Phys., 1982, vol. 53, pp. 1–7.

    Google Scholar 

  41. Wu, C., Power Performance of a Cascade Endoreversible Cycle, Energy Convers. and Managm., 1990, vol. 30. pp. 261–266.

    Google Scholar 

  42. Martynovskii, V.S., Tsikly, skhemy i kharakteristiki teplotransformatorov (Cycles of Schemes and Characteristics of Heat Converters), Moscow: Energiya, 1979.

    Google Scholar 

  43. Rozonoer, L.I. and Tsirlin, A.M., Optimal Control of Thermodynamic Systems, Avtom. Telemekh., 1983, no. 1, pp. 70–80.

  44. Chen, J. and Andresen, B., Optimal Analysis of Primary Performance Parameters for an Endoreversible Absorption Heat Pump, Heat Recovery Syst. CHP, 1995, vol. 15, pp. 723–731.

    Google Scholar 

  45. Wu, C., Maximum Cooling Load of a Heat-Engine-Driven Refrigerator, Energy Convers. Managm., 1993, vol. 34, pp. 691–696.

    Google Scholar 

  46. Amel'kin, S.A., Andersen, B., Salamon, P., et al., Limiting Performation of Thermomechanical Systems with Several Sources, Ivz. Ross. Akad. Nauk, Energetika, 1999, no. 2, pp. 152–158.

  47. Malykh, V.L., Termodinamicheskie ogranicheniya i effektivnost' izotermicheskikh protsessov razdeleniya (Thermodynamic Constraints and Effectiveness of Isothermic Separation Processes), Available from VINITI, 1987, Moscow, no. 2020–B87.

  48. Shambodal', P., Razvitie i prilozhenie ponyatiya entropii (Development and Application of the Entropy Concept), Moscow: Nauka, 1967.

    Google Scholar 

  49. Naka, Y. and Terashita, M., An Intermediate Heating and Cooling Method for a Distillation Column, J. Chem. Eng. Jpn., 1980, vol. 11, no. 2.

  50. Tsirlin, A.M., Sofiev, M.A., and Kazakov, V., Finite-Time Thermodynamics. Active Potentiostatting, J. Phys. D: Appl. Phys., 1998, vol. 31, pp. 2264–2268.

    Google Scholar 

  51. Szargut, J., Exergy Analysis of Thermal, Chemical, and Metallurgical Processes, New York: Hemisphere, 1988.

    Google Scholar 

  52. Leff, H.S., Thermal Efficiency at Maximum Work Output: New Results for Old Heat Engines, Am. J. Phys., 1987, vol. 55, pp. 602–610.

    Google Scholar 

  53. Tsirlin, A.M. and Kazakov, V., Maximal Work Problem in Finite-Time Thermodynamics, Phys. Rev. E., 2000, no. 1.

  54. Berry, R.S. and Andresen, B., Thermodynamic Constraints in Economic Analysis. Self-Organization and Dissipative Structures: Applications in Physical and Social Sciences, Schieve, W.C. and Allen, P.M., Eds., Austin: Univ. of Texas Press, 1982.

    Google Scholar 

  55. Berry, R.S. and Salamon, P., On A Relation between Economic and Thermodynamic Optima, Resour. Energy, 1978, no. 1, pp. 125–137.

  56. Finite-Time Thermodynamics and Thermoeconomics, Sieniutycz, S. and Salamom, P., Eds., New York: Taylor & Francis, 1990.

    Google Scholar 

  57. von Neumann, J., A Model of General Economic Equilibrium, Rev. Econ. Stud., 1945, vol. 3. pp. 1–9.

    Google Scholar 

  58. Rozonoer, L.I. and Malishevskii, A.V., A Model of Chaotic Exchange of Resources and Analogies between Thermodynamics and Economics, Vses. Soveshch. Probl. Upr., 1971, pp. 207–209.

  59. Rozonoer, L.I., Exchange and Distribution of Resources (A Generalized Thermodynamic Approach). I-III, Avtom. Telemekh., 1973, no. 5, pp. 115–132; no. 6, pp. 65–79; no. 8, pp. 82–103.

  60. Ayres, R.U. and Martinás, K., A Nonequilibrium Evolutionary Economic Theory, in Economics and Thermodynamics: New Perspectives on Economic Analysis, Burley, P. and Foster, J., Eds., Boston: Kluwer, 1994, pp. 73–98.

    Google Scholar 

  61. Ayres, R.U. and Martinás, K., Waste Potential Entropy: The Ultimate Ecotoxic? Econ. Appl., 1995, vol. XLVIII, no. 2, pp. 95–120.

    Google Scholar 

  62. Bródy, A., Martinás, K., and Sajó, K., An Essay on Macroecomomics, Acta Oeconomica, 1985, vol. 35, pp. 337–343.

    Google Scholar 

  63. Martinás, K., About Irreversibility in Microeconomics. Research Report (AHFT-89–1), Budapest: Dept. Low Temperature Physics, Eötvös Loránd Univ., 1989.

    Google Scholar 

  64. Martinás, K., Irreversible Microeconomics. Complex Systems in Natural and Economic Sciences, Moreau Matrafüred, 1995.

  65. Bryant, J., A Thermodynamic Approach to Economics, Energy Econ., 1982, vol. 4, pp. 36–50.

    Google Scholar 

  66. De Vos, A., Endoreversible Thermoeconomics, Energy Convers. Managm., 1995, vol. 36, no. 1, pp. 1–5.

    Google Scholar 

  67. De Vos, A., Endoreversible Economics, Energy Convers. Managm., 1997, vol. 38, no. 4, pp. 311–317.

    Google Scholar 

  68. Dyke, C., From Entropy to Economy, A Thorny Path, Adv. Human Ecology, 1992, vol. 1, pp. 149–176.

    Google Scholar 

  69. Ho lyst, J. A. and Urbanowicz, K., Chaos Control in Economic Model by Time-Delayed Feedback Method, Phys. A, 2000, vol. 287, no. 3–4, pp. 587–598.

    Google Scholar 

  70. Ayres, R.U. and Martinás, K., A Computable Economic Progress Function. Working Paper (WP-90–18), Austria: IIASA Laxenburg, 1990.

    Google Scholar 

  71. Petrov, A.A., Matematicheskaya model' rynochnogo ravnovesiya (Mathematical Model of Market Equilibrium) Moscow: Nauka, 1966.

    Google Scholar 

  72. De Vos, A., Endoreversible Thermodynamics versus Economics, Energy Convers. Managm., 1999, vol. 40, pp. 1009–1019.

    Google Scholar 

  73. Hurwicz, L. and Richter, M., An Integrability Condition with Applications to Utility Theory and Thermodynamics, J. Math. Econ., 1979, vol. 6. pp. 7–14.

    Google Scholar 

  74. Ville, J., The Existence Conditions of a Total Utility Function, Rev. Econ. Stud., 1951, vol. 19, pp. 123–128.

    Google Scholar 

  75. Ibrahim, O.M., Klein, S.A., and Mitchell, J.W., Effects of Irreversibility and Economics on the Performance of a Heat Engine, J. Solar Energy Eng., 1992, vol. 141, pp. 267–271.

    Google Scholar 

  76. Tsirlin, A.M., Optimal Processes and Control in Irreversible Microeconomics, Avtom. Telemekh., 2001, no. 5, pp. 159–171.

  77. Petrov, A.A., Ekonomika. Modeli. Vychislitel'nyi eksperiment (Economics. Models. Computer-Aided Experiment), Moscow: Nauka, 1996.

    Google Scholar 

  78. Ingber, L., Statistical Mechanics of Nonlinear Nonequilibrium Financial Markets: Applications to Optimized Trading, Math. Computer Modeling, 1996, vol. 23, pp. 101–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amel'kin, S.A., Martináas, K. & Tsirlin, A.M. Optimal Control for Irreversible Processes in Thermodynamics and Microeconomics. Automation and Remote Control 63, 519–539 (2002). https://doi.org/10.1023/A:1015195211937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015195211937

Keywords

Navigation