Skip to main content
Log in

Numerical Analysis of Linear and Nonlinear Time-Fractional Subdiffusion Equations

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

In this paper, a new type of the discrete fractional Grönwall inequality is developed, which is applied to analyze the stability and convergence of a Galerkin spectral method for a linear time-fractional subdiffusion equation. Based on the temporal–spatial error splitting argument technique, the discrete fractional Grönwall inequality is also applied to prove the unconditional convergence of a semi-implicit Galerkin spectral method for a nonlinear time-fractional subdiffusion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, vol. 140, 2nd edn. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  2. Akrivis, G., Crouzeix, M., Makridakis, C.: Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82(4), 521–541 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernardi, C., Maday, Y.: Spectral methods. Handb. Numer. Anal. 5, 209–485 (1997)

    MathSciNet  Google Scholar 

  5. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, New York (2007)

    Google Scholar 

  6. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  7. Ford, N., Rodrigues, M.M., Vieira, N.: A numerical method for the fractional Schrödinger type equation of spatial dimension two. Frac. Calc. Appl. Anal. 16(2), 454–468 (2013)

    MATH  Google Scholar 

  8. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  10. Li, B.: Mathematical modeling, analysis and computation for some complex and nonlinear flow problems. Ph.D. thesis, City University of Hong Kong (2012)

  11. Li, C., Zeng, F.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Opt. 34(2), 149–179 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  13. Li, D., Liao, H.-L., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24(1), 86–103 (2018)

    Article  MathSciNet  Google Scholar 

  14. Li, D., Wang, J., Zhang, J.: Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39(6), A3067–A3088 (2017)

    Article  MATH  Google Scholar 

  15. Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Model. 40(11/12), 6069–6081 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, D., Zhang, J.: Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain. J. Comput. Phys. 322, 415–428 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction–subdiffusion equations. J. Sci. Comput. 76(2), 848–866 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, H., Wu, H., Ma, H.: The Legendre Galerkin–Chebyshev collocation method for Burgers-like equations. IMA J. Numer. Anal. 23(1), 109–124 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liao, H.-L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liao, H.-L., McLean, W., Zhang, J.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liao, H.-l., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction–sudiffusion problem. arXiv:1803.09873

  22. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lubich, C.: Convolution quadrature revisited. BIT 44(3), 503–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu, Y., Deng, W., Wu, Y.: Positivity and boundedness preserving schemes for space-time fractional predator-prey reaction–diffusion model. Comput. Math. Appl. 69(8), 743–759 (2015)

    Article  MathSciNet  Google Scholar 

  28. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Eng. 327, 478–502 (2017)

    Article  MathSciNet  Google Scholar 

  30. Zhao, X., Sun, Z.-Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for their constructive comments and suggestions, which greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanhai Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zeng, F. Numerical Analysis of Linear and Nonlinear Time-Fractional Subdiffusion Equations. Commun. Appl. Math. Comput. 1, 621–637 (2019). https://doi.org/10.1007/s42967-019-00033-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-019-00033-w

Keywords

Mathematics Subject Classification

Navigation