Skip to main content
Log in

Riemann–Liouville calculus on quadratic fractal interpolation function with variable scaling factors

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this paper, we explore the Riemann–Liouvllie fractional calculus of quadratic fractal interpolation function (QFIF) with variable scaling factors. Fractional calculus of QFIF with predefined initial condition is investigated in an arbitrary closed interval of \(\mathbb {R}\). Further, the relation between the order of fractional integral (derivative) and the box dimension of QFIF is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barnsley, M.F. 1986. Fractal functions and interpolation. Constructive Approximation 2 (1): 303–329.

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnsley, M.F., and A.N. Harrington. 1989. The calculus of fractal interpolation functions. Journal of Approximation Theory 57 (1): 14–34.

    Article  MathSciNet  MATH  Google Scholar 

  3. Tatom, F.B. 1995. The relationship between fractional calculus and fractal. Fractals 3 (1): 217–229.

    Article  MathSciNet  MATH  Google Scholar 

  4. Yao, K., W.Y. Su, and S.P. Zhou. 2005. On the connection between the order of fractional calculus and the dimensions of a fractal function. Chaos, Solitons & Fractals 23: 621–629.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ruan, Huo-Jun, Su Wei-Yi, and Kui Yao. 2009. Box dimension and fractional integral of linear fractal interpolation functions. Journal of Approximation Theory 161: 187–197.

    Article  MathSciNet  MATH  Google Scholar 

  6. Liang, Y.S., and W.Y. Su. 2016. Fractal dimensions of fractional integral of continuous functions. Acta Mathematica Sinica 32 (12): 1494–1508.

    Article  MathSciNet  MATH  Google Scholar 

  7. Gowrisankar, A., and R. Uthayakumar. 2016. Fractional calculus on fractal interpolation function for a sequence of data with countable iterated function system. Mediterranean Journal of Mathematics 13 (6): 3887–3906.

    Article  MathSciNet  MATH  Google Scholar 

  8. Xiao, E.W., and H.D. Jun. 2017. Box dimension of Hadamard fractional integral of continuous functions of bounded and unbounded variation. Fractals 25 (3): 1750035.

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, Y., and Y. Liang. 2017. Upper bound estimation of fractal dimension of fractional calculus of continuous functions. Advances in Analysis 2 (2): 121–128.

    Google Scholar 

  10. Liang, Y.S., and Q. Zhang. 2016. A type of fractal interpolation functions and their fractional calculus. Fractals 24 (2): 1650026.

    Article  MathSciNet  MATH  Google Scholar 

  11. Diethelm, Kai. 2010. The analysis of fractional differential equations. Berlin: Springer.

    Book  MATH  Google Scholar 

  12. Kilbas, A.A., H.M. Srivastava, and J.J. Trujillo. 2006. Theory and applications of fractional differential equations. Sydney: Elsevier.

    MATH  Google Scholar 

  13. Wang, H.Y., and J.S. Yu. 2013. Fractal interpolation functions with variable parameters and their analytical properties. Journal of Approximation Theory 175: 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  14. Navascues, M.A. 2006. A fractal approximation to periodicity. Fractals 14 (4): 315–325.

    Article  MathSciNet  MATH  Google Scholar 

  15. Chand, A.K.B., and N. Vijender. 2014. Monotonicity preserving rational quadratic fractal interpolation functions. Advances in Numerical Analysis 504825: 17.

    MathSciNet  MATH  Google Scholar 

  16. Chand, A.K.B., M.A. Navascues, P. Viswanathan, and S.K. Katiyar. 2016. Fractal trigonometric polynomials for restricted range approximation. Fractals 24 (2): 1650022.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gowrisankar.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Informed consent

The research does not involve any human participants or animals. Therefore, we do not need the statement on welfare of human participants or animals.

Additional information

The research work has been supported by Indian Institute of Technology Guwahati, India under the scheme of Institute Post Doctoral Fellowship, Ref: IITG/ACAD/408/2016-17/69.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowrisankar, A., Prasad, M.G.P. Riemann–Liouville calculus on quadratic fractal interpolation function with variable scaling factors. J Anal 27, 347–363 (2019). https://doi.org/10.1007/s41478-018-0133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-018-0133-2

Keywords

Mathematics Subject Classification

Navigation