Skip to main content
Log in

A threefold violating a local-to-global principle for rationality

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

In this note we construct an example of a smooth projective threefold that is irrational over \(\mathbb {Q}\) but is rational at all places. Our example is a complete intersection of two quadrics in \(\mathbb P^5\), and we show it has the desired rationality behavior by constructing an explicit element of order \(4\) in the Tate–Shafarevich group of the Jacobian of an associated genus \(2\) curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code availability

The Magma code accompanying this paper is available in our Github repository https://github.com/lena-ji/local-global-2quadrics.

Notes

  1. \(\textrm{Div}^i(C)(k)\) denotes the set of \(k\)-rational divisors of degree \(i\). \({{\,\mathrm{{{\textbf {Pic}}}}\,}}^i_C\) denotes the degree \(i\) component of the Picard scheme, and its \(k\)-points are the \(k\)-rational divisor classes of degree \(i\).

  2. We work with this particular affine patch because, on many other patches, \(F_1(X)\) has no smooth \(\mathbb {F}_2\)-points. In practice, the most difficult condition to verify is the existence of \(\mathbb Q_2\)-points on \(F_1(X)\).

References

  1. Manin, Y.I.: Cubic Forms: Algebra, Geometry, Arithmetic. North-Holland Mathematical Library, vol. 4, p. 292. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1974). Translated from the Russian by M. Hazewinkel

  2. Coray, D.F., Tsfasman, M.A.: Arithmetic on singular Del Pezzo surfaces. Proc. Lond. Math. Soc. (3) 57(1), 25–87 (1988). https://doi.org/10.1112/plms/s3-57.1.25

    Article  MathSciNet  Google Scholar 

  3. Colliot-Thélène, J.-L., Sansuc, J.-J., Swinnerton-Dyer, P.: Intersections of two quadrics and Châtelet surfaces. I. J. Reine Angew. Math. 373, 37–107 (1987)

    MathSciNet  Google Scholar 

  4. Bruin, N., Stoll, M.: Deciding existence of rational points on curves: an experiment. Exp. Math. 17(2), 181–189 (2008)

    Article  MathSciNet  Google Scholar 

  5. Fisher, T., Yan, J.: Computing the Cassels-Tate pairing on the 2-Selmer group of a genus 2 Jacobian. arXiv e-prints (2023) https://doi.org/10.48550/arXiv.2306.06011 [math.NT]

  6. Hassett, B., Tschinkel, Y.: Rationality of complete intersections of two quadrics over nonclosed fields. Enseign. Math. 67(1–2), 1–44 (2021). https://doi.org/10.4171/lem/1001. With an appendix by Jean-Louis Colliot-Th’elène

  7. Benoist, O., Wittenberg, O.: Intermediate Jacobians and rationality over arbitrary fields. Ann. Sci. Éc. Norm. Supér. (4) 56(4), 1029–1086 (2023). https://doi.org/10.24033/asens.2549

    Article  MathSciNet  Google Scholar 

  8. Hassett, B., Tschinkel, Y.: Cycle class maps and birational invariants. Commun. Pure Appl. Math. 74(12), 2675–2698 (2021). https://doi.org/10.1002/cpa.21967

    Article  MathSciNet  Google Scholar 

  9. Frei, S., Ji, L., Sankar, S., Viray, B., Vogt, I.: Curve classes on conic bundle threefolds and applications to rationality. arXiv e-prints (2022) https://doi.org/10.48550/arXiv.2207.07093 [math.AG]. To appear in Algebraic Geometry

  10. Abraškin, V.A.: \(p\)-divisible groups over \(Z\). Izv. Akad. Nauk SSSR Ser. Mat. 41(5), 987–10071199 (1977)

    MathSciNet  Google Scholar 

  11. Fontaine, J.-M.: Il n’y a pas de variété abélienne sur \({ {Z}}\). Invent. Math. 81(3), 515–538 (1985). https://doi.org/10.1007/BF01388584

    Article  MathSciNet  Google Scholar 

  12. Wittenberg, O.: Principe de Hasse pour les intersections de deux quadriques. C. R. Math. Acad. Sci. Paris 342(4), 223–227 (2006). https://doi.org/10.1016/j.crma.2005.12.005

    Article  MathSciNet  Google Scholar 

  13. Iyer, J.N., Parimala, R.: Period-Index problem for hyperelliptic curves. arXiv e-prints arXiv:2201.12780 [math.AG] (2022)

  14. Colliot-Thélène, J.-L.: Retour sur l’arithmétique des intersections de deux quadriques, avec un appendice par A. Kuznetsov. Journal für die reine und angewandte Mathematik (Crelles Journal) (2023). https://doi.org/10.1515/crelle-2023-0081

    Article  Google Scholar 

  15. Auel, A., Bernardara, M., Bolognesi, M., Várilly-Alvarado, A.: Cubic fourfolds containing a plane and a quintic del Pezzo surface. Algebr. Geom. 1(2), 181–193 (2014) https://doi.org/10.14231/AG-2014-010

  16. Kunyavskii, B.: Tori and surfaces violating a local-to-global principle for rationality. arXiv e-prints arXiv:2305.03481 [math.AG] (2023). To appear in Comptes Rendus Mathematique

  17. Reid, M.: The complete intersection of two or more quadrics. http://homepages.warwick.ac.uk/~masda/3folds/qu.pdf. Ph.D thesis (Trinity College, Cambridge) (1972)

  18. Wang, X.: Maximal linear spaces contained in the base loci of pencils of quadrics. Algebr. Geom. 5(3), 359–397 (2018). https://doi.org/10.14231/AG-2018-011

    Article  MathSciNet  Google Scholar 

  19. Skorobogatov, A.: Torsors and Rational Points. Cambridge Tracts in Mathematics, vol. 144, p. 187. Cambridge University Press, Cambridge (2001). https://doi.org/10.1017/CBO9780511549588

  20. Bhargava, M., Gross, B.H., Wang, X.: A positive proportion of locally soluble hyperelliptic curves over \(\mathbb{Q}\) have no point over any odd degree extension. J. Am. Math. Soc. 30(2), 451–493 (2017) https://doi.org/10.1090/jams/863 . With an appendix by Tim Dokchitser and Vladimir Dokchitser

  21. Shankar, A., Wang, X.: Rational points on hyperelliptic curves having a marked non-Weierstrass point. Compos. Math. 154(1), 188–222 (2018). https://doi.org/10.1112/S0010437X17007515

    Article  MathSciNet  Google Scholar 

  22. Auel, A., Bernardara, M., Bolognesi, M.: Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems. J. Math. Pures Appl. (9) 102(1), 249–291 (2014). https://doi.org/10.1016/j.matpur.2013.11.009

    Article  MathSciNet  Google Scholar 

  23. Poonen, B., Stoll, M.: The Cassels-Tate pairing on polarized abelian varieties. Ann. Math. (2) 150(3), 1109–1149 (1999). https://doi.org/10.2307/121064

    Article  MathSciNet  Google Scholar 

  24. Addington, N., Antieau, B., Frei, S., Honigs, K.: Rational points and derived equivalence. Compos. Math. 157(5), 1036–1050 (2021). https://doi.org/10.1112/S0010437X21007089

    Article  MathSciNet  Google Scholar 

  25. Flynn, E.V.: The Hasse principle and the Brauer-Manin obstruction for curves. Manuscripta Math. 115(4), 437–466 (2004). https://doi.org/10.1007/s00229-004-0502-9

    Article  MathSciNet  Google Scholar 

  26. Fisher, T., Yan, J.: Code accompanying “Computing the Cassels-Tate pairing on the 2-Selmer group of a genus 2 Jacobian”. https://www.dpmms.cam.ac.uk/~taf1000/papers/genus2ctp.html (2023)

  27. Bruin, N., Stoll, M.: Solvability of small curves of genus 2. http://www.cecm.sfu.ca/~nbruin/smallgenus2curves/

  28. Frei, S., Ji, L.: Code accompanying “A threefold violating a local-to-global principle for rationality”. https://github.com/lena-ji/local-global-2quadrics (2023)

  29. Harris, J.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 133, p. 328. Springer, New York (1992). https://doi.org/10.1007/978-1-4757-2189-8 . A first course

  30. Krasnov, V.A.: On the intersection of two real quadrics. Izv. Ross. Akad. Nauk Ser. Mat. 82(1), 97–150 (2018). https://doi.org/10.4213/im8535

    Article  MathSciNet  Google Scholar 

  31. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997) https://doi.org/10.1006/jsco.1996.0125 . Computational algebra and number theory (London, 1993)

Download references

Acknowledgements

We are grateful to Anthony Várilly-Alvarado for computing advice, to Tom Fisher for suggesting a simplifying change of coordinates, and to Tom Fisher and Jiali Yan for correspondence about [5, 26]. We also thank Eran Assaf, Asher Auel, Nils Bruin, Sebastian Casalaina-Martin, Brendan Creutz, Sam Frengley, Jack Petok, and Bianca Viray for helpful conversations. The computations in Sect. 3 were done in Magma [31].

Funding

L.J. was supported by the National Science Foundation under MSPRF Grant DMS-2202444.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Frei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frei, S., Ji, L. A threefold violating a local-to-global principle for rationality. Res. number theory 10, 39 (2024). https://doi.org/10.1007/s40993-024-00515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-024-00515-8

Keywords

Mathematics Subject Classification

Navigation