Skip to main content
Log in

A nonlinear theory of generalized functions

  • Special issue commemorating the Golden Jubilee of the Institute of Mathematics and Statistics of the University of São Paulo
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Generalized Functions are crucial in the development of theories modeling physical reality. Starting with the linear theory, we give a partial account of what is known, focussing on the non-linear theory and some of its more recent achievements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwartz, L.: Sur l’impossibilité de la multiplication des distributions. C. R. Acad. Sci. Paris 239, 847–848 (1954)

    MathSciNet  MATH  Google Scholar 

  2. Schwartz, L.: Théorie des distributions , Publications de l’Institut de Mathématique de l’Université de Strasbourg, No.IX-X, Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris (1966)

  3. Hormander, L.: Linear Partial Differential Operators. Springer, New York (1976)

    MATH  Google Scholar 

  4. Hormander, L.: The analysis of linear partial differential operators, 2nd edn. Springer, Berlin (1990)

    MATH  Google Scholar 

  5. Lewy, H.: An example of a smooth linear partial differential equation without solution. Ann. Math. 66(2), 155–158 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nirenberg, L., Treves, F.: Solvability of a first order linear partial differential equation. Commun. Pure Appl. Math. 16, 331–351 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nachbin, L.: Recent developments in infinite dimensional holomorphy. Bull. AMS 79, 625–640 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nachbin, L.: Some holomorphically significant properties of ovally convex spaces, J. Funct. Anal. 251–277 (1976)

  9. Rosinger, E.E.: Nonlinear partial differential equations. Sequential and weak solutions, North Holland, Amsterdam (1980)

  10. Rosinger, E.E.: Generalized solutions of nonlinear partial differential equations. North Holland, Amsterdam (1987)

  11. Sebastiãoe Silva, J.: Sui fondamenti della teoria dei funzionali analitici. Port. Math. 12, 1–46 (1953)

    MathSciNet  MATH  Google Scholar 

  12. Sebastião e Silva, J.: Sur un construction axiomatique de la théorie des distributions, Revista da Faculdade de Ciencias de Lisboa. II Ser. A4. 79-186 (1955)

  13. Kunzinger, M.: Lie transformation group in Colombeau’s algebras. Doctoral Thesis, University of Viena, (1996)

  14. Colombeau, J.F.: Differential Calculus and Holomorphy. Real and Complex Analysis in Locally Convex Spaces, North Holland, Amsterdam (1982)

  15. Colombeau, J.F.: New generalized functions and multiplication of distributions. North Holland, Amsterdam (1984)

  16. Colombeau, J.F.: New Generalized functions multiplication of distributions. Phys. Appl. Port. Math. 41(1–4), 57–69 (1982)

    MATH  Google Scholar 

  17. Colombeau, J.F.: Elementary introduction to new generalized functions. North Holland, Amsterdam (1985)

  18. Colombeau, J.F.: Multiplication de distributions et acoustique. J. Acoust. 1, 9–14 (1988)

    Google Scholar 

  19. Colombeau, J.F., Langlais, M.: Generalized solutions of nonlinear parabolic equations with distributions as initial conditions. J. Math. Anal. Appl. 145(1), 186–196 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Aragona, J., Biagioni, H.: Intrinsic definition of the colombeau algebra of generalized functions. Anal. Math. 17, 75–132 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aragona, J., Fernandez, R., Juriaans, S.O., Oberguggenberger, M.: Differential calculus and integration on generalized functions over membranes. Monatsh. Math. 166, 1–18 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Aragona, J., Fernandez, R., Juriaans, S.O.: A discontinuous Colombeau differential calculus. Monatsh. Math. 144(10), 13–29 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Aragona, J., Garcia, A.R.G., Juriaans, S.O.: Algebraic theory of Colombeau’s generalized numbers. J. Algebra 384, 194–211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Aragona, J., Fernandez, R., Juriaans, S.O.: Natural Topologies on colombeau algebras. Topol. Methods. Nonlinear Anal. 34(1), 161–180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Aragona, J., Juriaans, S.O., Oliveira, O.R.B., Scarpalézos, D.: Algebraic and geometry theory of the topological ring of Colombeau generalized functions. Proc. Edinb. Math. Soc. 51(3), 545–564 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Aragona, J., Juriaans, S.O.: Some structural properties of the topological ring of Colombeau generalized numbers. Commun. Alg. 29(5), 2201–2230 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Aragona, J., Soares, M.: An existence theorem for an analytic first order PDE in the framework of Colombeau’s theory. Monatsh. Math. 134, 9–17 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Scarpalezos, D.: Topologies dans les espaces de nouvelles fonctions generalisées de Colombeau. \({\overline{\mathbb{C}}}\) topologiques, Université Paris 7 (1993)

  29. Scarpalezos, D.: Colombeau’s generalized functions: topological structures micro local properties. A simplified point of view, CNRS-URA212, Université Paris 7 (1993)

  30. Scarpalezos, D.: Colombeau’s generalized functions: topological structures; microlocal properties—a simplified point of view part I. Bull. Sci. Math. Nat. Sci. Math. 121(25), 89–114 (2000)

    MATH  Google Scholar 

  31. Grosser, M., Kunzinger, M., Steinbauer, R., Oberguggenberger, M.: Geometric theory of generalized functions with application to general relativity. Kluwer Acad Publ, Boston (2001)

    Book  MATH  Google Scholar 

  32. Grosser, M., Kunzinger, M., Steinbauer, R., Vickers, J.A.: A global theory of algebras of generalized functions. Adv. Math. 166(1), 50–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Alvarez, A.C., Meril, A., Valiño-Alonso, B.: Step soliton generalized solutions of the shallow water equations, Hindawi Publishing Corporation. J. Appl. Math. (2012)

  34. Aragona, J., Colombeau, J.F., Juriaans, S.O.: Locally convex topological algebras of generalized functions: compactness and nuclearity in a nonlinear context. Tran. Am. Math. Soc. 367, 5399–5414 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Aragona, J., Colombeau, J.F., Juriaans, S.O.: Nonlinear generalized functions and jump conditions for a standard one pressure liquid-gas model. J. Math. Anal. Appl. 418, 964–977 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Aragona, J., Garcia, R.G., Juriaans, S.O.: Generalized solutions of a nonlinear parabolic equations with generalized functions as initial data. Nonlinear Anal. 71, 5187–5207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Aragona, J., Villarreal, F.: Colombeau’s theory and shock waves in a problem of hydrodynamics. J. D’Analyse Math. 61, 113–144 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Brézis, H., Friedman, A.: Nonlinear parabolic equations involving measures as initial conditions. J. Math. Pures Appl. 62, 73–97 (1983)

    MathSciNet  MATH  Google Scholar 

  39. Garetto, C.: Topological structures in Colombeau algebras I: topological \({\overline{\mathbb{C}}}\)-modules and duality theory. arXic:math.GN/0407015V1

  40. Garetto, C.: Pseudodifferential operators with generalized symbols and regularity theory. Electron. J. Diff. Equ. 116, 1–43 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Oberguggenberger, M.: Multiplication of distributions and application to partial differential equations 259, Longman scientific and techinical harlow (1992)

  42. Kamleh, W.: Signature changing space-times and the new generalized functions. preprint

  43. Kunzinger, M., Steinbauer R.: Generalized psuedo-riemannian geometry. Trans. Amer. Math. Soc. 354(10), 4179–4199

  44. Prusa, V., Řehoř, M., Tuma, K.: Colombeau Algebra as mathematical tool for investigating step load and step deformation of systems of nonlinear springs and dashpots, Zeitschrift für angewandte Mathematik und Physik ZAMP. (2016)

  45. Bosch, S., Güntzer, U., Remmert, R.: Non-archimedean analysis. Springer, Berlin, Heidelberg (1984)

    Book  MATH  Google Scholar 

  46. Garcia, A.R.G., Juriaans, S.O., Rodrigues, W., Silva, J.C.: Off diagonal condition. preprint

  47. Todorov, T.D., Vernaeve, H.: Full algebra of generalized functions and non-standard asymptotic analysis. Log. Anal. 205–234, (2008)

  48. Gillman, L., Jerison, M.: Rings of continuous functions. Van Nostrand, New York (1960)

    Book  MATH  Google Scholar 

  49. Khelif, A., Scarpalezos, D.: Maximal closed ideals of Colombeau algebras of generalized functions. Submitted

  50. Aragona, J.: Colombeau generalized functions on quasi-regular sets. Publ. Math. 68(3–4), 371–399 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Aragona, J.: On existence theorems for the del-bar operator on generalized differential forms. Proc. Lond. Math. Soc. 53(3), 474–488 (1986)

    Article  MATH  Google Scholar 

  52. Aragona, J.: Some results for the \({\overline{\partial }}\) operator on generalized differential forms. J. Math. Anal. Appl. 180, 458–468 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  53. Oberguggenberger, M., Pilipovic, S., Valmorin, V.: Global representatives of colombeau holomorphic generalized functions. Monatshefte für Math. 151, 67–74 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Oberguggenberger, M., Vernaeve, H.: Internal sets and internal functions in Colombeau theory. J. Math. Anal. Appl. 341, 649–659 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Colombeau, J.F., Galé, J.E.: Analytic continuation of generalized functions. Acta Math. Hung. 52, 57–60 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  56. Colombeau, J.F., Galé, J.: Holomorphic generalized functions. J. Math. Anal. Appl. 103, 117–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  57. Khelif, A.: Scarpalezos, D.: Zeros of generalized holomorphic functions. Monatschefte fur Math. 325–333 (2006)

  58. Garcia, A.R.G., Juriaans, S.O., Rodrigues, W.M., Silva, J.C.: Sets of uniqueness for holomorphic nets. Submitted

  59. Cortes, W., Ferrero, M., Juriaans, S.O.: The Colombeau quaternion algebra. Contemp. Math. 499, 37–45 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  60. Cortes, W., Garcia, A.R.G., Da Silva, S.H.: The ring of Colombeau’s full generalized quaternions. Commun. Algebra 45, 1532–4125 (2017)

    MATH  Google Scholar 

  61. Oberguggenberger, M.: Multiplication of distributions and applications to partial differential equations. Pitman (1992)

  62. Oberguggenberger, M., Pilipovic, S., Scarpalezos, D.: Local properties of Colombeau generalized functions. Preprint (2001)

  63. Pilipovic, S.: Analytic, real analytic and Harmonic generalized functions. Saravejo J. Math. 7, 207–222 (2011)

    MathSciNet  MATH  Google Scholar 

  64. Todorov, T.D.: Pointwise value and fundamental theorem in the algebra of asymptotic functions. arXiv (2006)

  65. Vernaeve, H.: Ideals in the ring of Colombeau generalized numbers. Commun. algebra 38(6), 2199–2228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. Kunzinger, M.M.: Characterization of Colombeau generalized functions by their point value. Math. Nachr. 203, 147–157 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  67. Hörmann, G.: The Cauchy problem for Schrödinger-type partial differential operators with generalized functions in the principal part and as data. Monatsh. Math. 163, 445–460 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author is very much indebted to Jorge Aragona for introducing him into the subject of Colombeau generalized functions in 1997 and for his collaboration throughout the years following this. His ideas and mathematical precision are the things which will be remembered. He is also indebted to J.F. Colombeau for many valuable teachings and collaborations. It was a privilege to have learned from the creator and masters of the theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Juriaans.

Additional information

Communicated by Claudio Gorodski.

In honor of Alfredo Jorge Aragona Vallejo (In memoriam).

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, A.R.G., Juriaans, S.O., Oliveira, J. et al. A nonlinear theory of generalized functions. São Paulo J. Math. Sci. 16, 396–405 (2022). https://doi.org/10.1007/s40863-020-00205-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-020-00205-0

Keywords

Mathematics Subject Classification

Navigation