Skip to main content
Log in

GLS methods for Stokes equations under boundary condition of friction type: formulation-analysis-numerical schemes and simulations

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper, we present in two and three dimensional space Galerkin least squares (GLS) methods allowing the use of equal order approximation for both the velocity and pressure modeling the Stokes equations under Tresca’s boundary condition. We propose and analyse two finite element formulations in bounded domains. Firstly, we construct the unique weak solution for each problem by using the method of regularization combined with the monotone operators theory and compactness properties. Secondly, we study the convergence of the finite element approximation by deriving a priori error estimate. Thirdly, we formulate three numerical algorithms namely; projection-like algorithm couple with Uzawa’s iteration, the alternative direction method of multiplier and an active set strategy. Finally some numerical experiments are performed to confirm the theoretical findings and the efficiency of the schemes formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ayadi, M., Baffico, L., Gdoura, M.K., Sassi, T.: Error estimates for Stokes problem with tresca friction conditions. Esaim: M2AN 48, 1413–1429 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boffi, D., Brezzi, F., Fortin, F.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer Verlag, Berlin (2013)

    Book  MATH  Google Scholar 

  3. Bonvin, J., Picasso, M., Stenberg, R.: GLS and EVSS methods for a three field stokes problem arising from viscoelastic flows. Comput. Methods Appl. Mech. Eng. 190, 3893–3914 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Ridgway Scott, L.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2010)

    MATH  Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and partial differential equations. Springer, Berlin (2010)

    Google Scholar 

  6. Brezzi, F., Douglas, J.: Stabilized mixed finite methods for Stokes problem. Numer. Math. 53, 225–236 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Fortin, M.: A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89, 457–491 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations for the Stokes problem. In: Hackbusch, W. (ed.) Notes on Numerical Fluid Mechanics, vol. 10, pp. 11–19. Vieweg, Braunschweig (1984)

    Google Scholar 

  9. Brezzi, F., Hager, W., Raviart, P.A.: Error estimates for finite element solution of variational inequalities, part II. Mixed methods. Numer. Math. 31, 1–16 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin methods for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MATH  Google Scholar 

  11. Ciarlet, P.: Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)

  12. Djoko, J.K., Koko, J.: Numerical methods for the Stokes and Navier-Stokes equations driven by threshold slip boundary conditions. Comput. Methods. Appl. Mech. Eng. 305, 936–958 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Djoko, J.K., Mbehou, M.: Finite element analysis of the stationary power law Stokes equations driven by friction boundary conditions. J. Numer. Math. 23(1), 21–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Djoko, J.K., Koko, J., Kucera, R.: Power law Stokes equations with threshold slip boundary conditions: Numerical methods and implementation. MMAS 42, 1488–1511 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Douglas, J., Wang, J.: An absolutely stabilized finite element method for the Stokes problem. Math. Comp 52, 495–508 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Grundlehren der Mathematischen Wissenschaften, vol. 219. Springer-Verlag, Berlin (1976)

    Google Scholar 

  17. Franca, L.P., Frey, S.L.: Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Franca, L.P., Hughes, T.J.R.: Convergence analyses of Galerkin least squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier Stokes equations. Comput. Methods Appl. Mech. Eng. 105, 285–298 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Franca, L., Stenberg, R.: Error analysis of some galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal 28(6), 1680–1697 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95, 253–276 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fujita, H.: A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions. In: Mathematical Fluid Mechanics and Modeling, RIMS K��kyūroko, 888, pp. 199–216. Kyoto University, Kyoto (1994)

  22. Fujita, H.: Non-stationary Stokes flows under leak boundary conditions of friction type. J. Comput. Appl. Math. 19, 1–8 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Girault, V., Hecht, F.: Numerical Methods for Grade-Two Fluid Models: Finite-Element Discretizations and Algorithms. In: Glowinski, R., Xu, J. (eds.) Handbook of Numerical Analysis, Numerical Methods for Non-Newtonian Fluids, vol. XVI, pp. 5–207. North Holland; Amsterdam (2011)

  24. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag, Berlin, Heidelberg, New-York, Tokyo (1986)

    Book  MATH  Google Scholar 

  25. Glowinski, R.: Finite element methods for incompressible viscous flow. In: Ciarlet, P.G., Lions, J.L. (eds) Handbook of Numerical Analysis, vol. IX, pp. 3–1176. North Holland; Amsterdam (2003)

  26. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer Series in Computational Physics, Springer-Verlag, Berlin Heidelberg (2008)

  27. Haslinger, J., Kučera, R., Dostál, Z.: An algorithm for the numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math. 164–165, 387–408 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hughes, T.J.R., Franca, L.P.: A new finite element formulation for computational uid dynamics: VII. The Stokes problem with various well-posed boundary conditions, symmetric formulations that converge for all velocity-pressure spaces. Comp. Methods Appl. Mech. Eng. 65, 85–96 (1987)

    Article  MATH  Google Scholar 

  29. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babúska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59, 85–99 (1986)

    Article  MATH  Google Scholar 

  30. Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comput. Methods Appl. Mech. Eng. 54, 223–234 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jing, F.F., Han, W., Zhang, Y.C., Yan, W.J.: Analysis of an aposteriori error estimator for a variational inequality governed by Stokes equations. J. Comput. Appl. Math. 372, 112721 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kashiwabara, T.: On a finite element approximation of the Stokes equations under a slip boundary condition of the friction type. J. Indust. Appl. Math. 30, 227–261 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Koko, J.: A MATLAB mesh generator for the two-dimensional finite element method. Appl. Math. Comput. 250, 650–664 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Koko, J.: Fast MATLAB assembly of FEM matrices in 2D and 3D using cell array approach. Int. J. Model Simul. Sci. Comput. (2016). https://doi.org/10.1142/S1793962316500100

    Article  Google Scholar 

  36. Le Roux, C.: Steady Stokes flows with threshold slip boundary conditions. Math. Models Methods Appl. Sci. 15(8), 1141–1168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, J., Zheng, H., Zou, Q.: A priori and a posteriori estimates of the stabilized finite element methods for the incompressible flow with slip boundary conditions arising in arteriosclerosis. Adv. Differ. Equ. 374 (2019)

  38. Li, Y., An, R.: Penalty finite element method for Navier-Stokes equations with nonlinear slip boundary conditions. Int. J. Numer. Methods Fluids. 69, 550–566 (2011)

    Article  MathSciNet  Google Scholar 

  39. Li, Y., Li, K.: Penalty finite element method for Stokes problem with nonlinear slip boundary conditions. Appl. Math. Comput. 204, 216–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  41. Qiu, H., Xue, C., Xue, L.: Low-order stabilized finite element methods for the unsteady Stokes/Navier-Stokes equations with friction boundary conditions. MMAS., 42(5) (2018)

  42. Temam, R.: Navier-Stokes equations: Theory and Numerical Analysis, 2nd edn. AMS Chelsea publishing, New York (2001)

    MATH  Google Scholar 

  43. Voglis, C., Lagaris, I.E.: BOXCQP: A algorithm for bound constrained convex quadratic problems. In: Proceedings of the 1st International Conference “From Scientific Computing to Computational Engineering”, pp. 8–10. 1st IC-SCCE, Athens (2004)

  44. Yuan, Li., Kaitai, Li.: Pressure projection stabilized finite element method for Navier-Stokes equations with nonlinear slip boundary conditions. Computing 87, 113–133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yuan, Li., Rong, An.: Semi-discrete stabilized finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions based on regularization procedure. Numer. Math 117, 1–16 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their constructive remarks and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Djoko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djoko, J.K., Koko, J. GLS methods for Stokes equations under boundary condition of friction type: formulation-analysis-numerical schemes and simulations. SeMA 80, 581–609 (2023). https://doi.org/10.1007/s40324-022-00312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-022-00312-2

Keywords

Mathematics Subject Classification

Navigation