Skip to main content
Log in

Strong Stability Preserving Integrating Factor General Linear Methods

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we discuss the numerical solution of systems of differential equations with both linear (stiff) and nonlinear components that arise from the semi-discretization of certain partial differential equations. When faced with the task of solving problems with discontinuous solutions numerically, the linear stability properties are insufficient for convergence. So, to overcome this drawback, strong stability preserving (SSP) methods are introduced. While using SSP implicit-explicit methods lead to severe constraints on the allowed time-stepping, an integrating factor approach reduces this limitation by solving the linear part exactly. In this work, we develop integrating factor general linear methods (IFGLMs) with strong stability properties. Sufficient conditions for IFGLMs to be SSP are discussed. The construction of IFGLMs of order \(p\le 6\) and stage order \(1\le q\le p\) with \(r=p\) external stages and \(2\le s\le 10\) internal stages is presented, which have larger effective SSP coefficients than the class of Runge–Kutta and two–step Runge–Kutta methods. Results are verified numerically on several representative test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Albrecht P (1985) Numerical treatment of ODEs: the theory of A-methods. Numer Math 47:59–87

    Article  MathSciNet  MATH  Google Scholar 

  • Albrecht P (1987) A new theoretical approach to Runge-Kutta methods. SIAM J Numer Anal 24:391–406

    Article  MathSciNet  MATH  Google Scholar 

  • Albrecht P (1989) Elements of a general theory of composite integration methods. Appl Math Comput 31:1–17

    MathSciNet  MATH  Google Scholar 

  • Albrecht P (1996) The Runge-Kutta theory in a nutshell. SIAM J Numer Anal 33:1712–1735

    Article  MathSciNet  MATH  Google Scholar 

  • Albrecht P (1996) The common basis of the theories of linear cyclic methods and Runge-Kutta methods. Appl Numer Math 22:3–21

    Article  MathSciNet  MATH  Google Scholar 

  • Butcher JC (1965) A modified multistep method for the numerical integration of ordinary differential equations. J ACM 12:124–135

    Article  MathSciNet  MATH  Google Scholar 

  • Burrage K, Butcher JC (1980) Non-linear stability of a general class of differential equations methods. BIT 20:185–203

    Article  MathSciNet  MATH  Google Scholar 

  • Cardone A, Jackiewicz Z, Verner JH, Welfert B (2015) Order conditions for general linear methods. J Comput Appl Math 290:44–64

    Article  MathSciNet  MATH  Google Scholar 

  • Conde S, Gottlieb S, Grant Z, Shadid JN (2017) Implicit and implicit-explicit strong stability preserving Runge-Kutta methods with high linear order. J Sci Comput 73:667–690

    Article  MathSciNet  MATH  Google Scholar 

  • Constantinescu EM, Sandu A (2010) Optimal explicit strong-stability-preserving general linear methods. J Sci Comput 32:3130–3150

    MathSciNet  MATH  Google Scholar 

  • Ferracina L, Spijker MN (2008) Strong stability of singly-diagonally-implicit Runge-Kutta methods. Appl Numer Math 58:1675–1686

    Article  MathSciNet  MATH  Google Scholar 

  • Gottlieb S, Ketcheson D.I, Shu C.-W (2011) Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientifics Singapore

  • Hairer E, Wanner G (2010) Solving ordinary differential equations II: stiff and differential-algebraic problems. Springer, Berlin

    MATH  Google Scholar 

  • Higueras I (2006) Strong stability for additive Runge-Kutta methods. SIAM J Numer Anal 44:1735–1758

    Article  MathSciNet  MATH  Google Scholar 

  • Higueras I (2009) Characterizing strong stability preserving additive Runge-Kutta methods. J Sci Comput 39:115–128

    Article  MathSciNet  MATH  Google Scholar 

  • Higueras H, Happenhofer N, Koch O, Kupka F (2014) Optimized strong stability preserving IMEX Runge-Kutta methods. J Comput Appl Math 272:116–140

    Article  MathSciNet  MATH  Google Scholar 

  • Hundsdorfer W, Verwer JG (2003) Numerical solution of time-dependent advection-diffusion-reaction equations. Springer-Verlag, Berlin, Heidelberg, New York

    Book  MATH  Google Scholar 

  • Isherwood L, Gottlieb S, Grant Z (2018) Strong stability preserving integrating factor Runge-Kutta methods. SIAM J Numer Anal 56(6):3276–3307

    Article  MathSciNet  MATH  Google Scholar 

  • Isherwood L, Gottlieb S, Grant Z (2019) Strong stability preserving integrating factor two-step Runge-Kutta methods. J Sci Comput 81:1446–1471

    Article  MathSciNet  MATH  Google Scholar 

  • Izzo G, Jackiewicz Z (2015) Strong stability preserving general linear methods. J Sci Comput 65:271–298

    Article  MathSciNet  MATH  Google Scholar 

  • Izzo G, Jackiewicz Z (2019) Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part. Numer Algorithms 81:1343–1359

    Article  MathSciNet  MATH  Google Scholar 

  • Izzo G, Jackiewicz Z (2021) Strong stability preserving IMEX methods for partitioned systems of differential equations. Commun Appl Math Comput 3:719–758

    Article  MathSciNet  MATH  Google Scholar 

  • Izzo G, Jackiewicz Z (2022) Strong stability preserving Runge-Kutta and linear multistep methods. Bull Iran. Math. Soc. 48:4029–4062

    Article  MathSciNet  MATH  Google Scholar 

  • Jackiewicz Z (2009) General linear methods for ordinary differential equations. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Kaps P Rosenbrock-type methods. In: Dahlquist, G., Jeltsch, R. (eds.) Numerical Methods for Solving Stiff Initial Value Problems. Proceeding, Oberwolfach 28.6.4.7.1981. Bericht Nr. 9, Institut f\(\ddot{\text{u}}\)r Geometrie und Praktische Mathematik, RWTH Aachen, Aachen

  • Ketcheson DI, Gottlieb S, Macdonald CB (2011) Strong stability preserving two-step Runge-Kutta methods. SIAM J Numer Anal 49:2618–2639

    Article  MathSciNet  MATH  Google Scholar 

  • Ketcheson DI, Macdonald CB, Gottlieb S (2009) Optimal implicit strong stability preserving Runge-Kutta methods. Appl Numer Math 52:373–392

    Article  MathSciNet  MATH  Google Scholar 

  • Kupka F, Happenhofer N, Higueras I, Koch O (2012) Total-variation-diminishing implicit-explicit Runge-Kutta methods for the simulation of double-diffusive convection in astrophysics. J Comput Phys 231:3561–3586

    Article  MATH  Google Scholar 

  • Lenferink HWJ (1991) Contractivity-preserving implicit linear multistep methods. Math Comp 56:177–199

    Article  MathSciNet  MATH  Google Scholar 

  • Moradi A, Abdi A, Hojjati G (2022) Strong stability preserving implicit and implicit-explicit second derivative general linear methods with RK stability. Comput Appl Math 41:135

    Article  MathSciNet  MATH  Google Scholar 

  • Moradi A, Abdi A, Hojjati G (2022) Implicit-explicit second derivative general linear methods with strong stability preserving explicit part. Appl Numer Math 181:23–45

    Article  MathSciNet  MATH  Google Scholar 

  • Moradi A, Sharifi M, Abdi A (2020) Transformed implicit-explicit second derivative diagonally implicit multistage integration methods with strong stability preserving explicit part. Appl Numer Math 156:14–31

    Article  MathSciNet  MATH  Google Scholar 

  • Pareschi L, Russo G (2005) Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J Sci Comput 25:129–155

    MathSciNet  MATH  Google Scholar 

  • Spijker MN (2007) Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J Numer Anal 45:1226–1245

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gholamreza Hojjati or Mohammad Mehdizadeh Khalsaraei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khakzad, P., Moradi, A., Hojjati, G. et al. Strong Stability Preserving Integrating Factor General Linear Methods. Comp. Appl. Math. 42, 214 (2023). https://doi.org/10.1007/s40314-023-02356-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-023-02356-0

Keywords

Mathematics Subject Classification

Navigation