Skip to main content
Log in

Ulam–Hyers type stability for \(\psi \)-Hilfer fractional differential equations with impulses and delay

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The existence, uniqueness and Ulam–Hyers type stability for a class of \(\psi \)-Hilfer fractional differential equations will be investigated. To this end, the Banach fixed point principle and a Gronwall inequality involving the \( \psi \)-Riemann–Liouville fractional integral are used. Applications to illustrate the results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdo MS, Panchal SK, Wahash HA (2020) Ulam–Hyers–Mittag-Leffler stability for a \(\psi \)-Hilfer problem with fractional order and infinite delay. Results Appl Math 7(100):115

    MATH  Google Scholar 

  • Almeida R (2017) A Caputo fractional derivative of a function with respect to another function. Commun Nonlinear Sci Numer Simulat 44:460–481

    Article  MathSciNet  Google Scholar 

  • Antonov A, Nenov S, Tsvetkov T (2019) Impulsive controllability of tumor growth. Dyn Syst Appl 28(1):93–109

    Google Scholar 

  • Bainov DD, Dishliev AB (1990) Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population. Esaim Math Model Numer Anal 24(6):681–691

    Article  MathSciNet  Google Scholar 

  • Ballinger GH (1999) Qualitative theory of impulsive delay differential equations. PhD thesis, Univesity of Waterloo

  • Foryś U, Poleszczuk J, Liu T (2014) Logistic tumor growth with delay and impulsive treatment. Math Popul Stud 21:146–158

    Article  MathSciNet  Google Scholar 

  • Gopalsamy K (1992) Stability and oscillations in delay differential equations of population dynamics, mathematics and its applications, vol 74, 1st edn. Springer, Dordrecht

    Book  Google Scholar 

  • Hutchinson GE (1948) Circular causal systems in ecology. Ann NY Acad Sci 50(4):221–246

    Article  Google Scholar 

  • Keane A, Krauskopf B, Postlethwaite CM (2017) Climate models with delay differential equations. Chaos 27(11):114309

  • Khader MM, Babatin MM (2013) On approximate solutions for fractional logistic differential equation. Math Probl Eng 2013:391901

  • Kharade JP, Kucche KD (2020) On the impulsive implicit \(\psi \)-Hilfer fractional differential equations with delay. Math Meth Appl Sci 43(4):1938–1952

    Article  MathSciNet  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, North-Holland mathematics studies, vol 204. Elsevier, Amsterdam

    Google Scholar 

  • Kolmanovskii V, Myshkis A (1999) Introduction to the theory and applications of functional differential equations. Springer, Heidelberg

    Book  Google Scholar 

  • Kuang Y (1993) Delay differential equations: with applications in population dynamics. Mathematics in science and engineering. Academic Press, San Diego

    Google Scholar 

  • Lima KB (2020) Existence, uniqueness and Ulam-Hyers type stability for \(\psi \)-Hilfer fractional-order delay impulsive equations (Existência, unicidade e estabilidade do tipo Ulam-Hyers de solução de equações diferenciais fracionárias impulsivas \(\psi \)-Hilfer). PhD thesis, Universidade Estadual de Campinas

  • Lima KB, Sousa JVdC, Capelas de Oliveira E (2019) Existence and uniqueness for \(\psi \)-Hilfer impulsive fractional differential equations (Existência e unicidade de solução de equações diferenciais fracionárias impulsivas \(\psi \)-Hilfer). Proc Ser Braz Soc Comput Appl Math 7(1):010381

  • Liu Z, Wu J, Chen Y et al (2010) Impulsive perturbations in a periodic delay differential equation model of plankton allelopathy. Nonlinear Anal Real World Appl 11:432–445

    Article  MathSciNet  Google Scholar 

  • Liu K, Wang J, O’Regan D (2019) Ulam–Hyers–Mittag-Leffler stability for \(\psi \)-Hilfer fractional-order delay differential equations. Adv Differ Equ 209:1337–1350

    MathSciNet  MATH  Google Scholar 

  • Ma C (2019) A novel computational technique for impulsive fractional differential equations. Symmetry 11(216)

  • Murray JD (2002) Mathematical biology, interdisciplinary applied mathematics, vol 17, 3rd edn. Springer, New York

    Google Scholar 

  • Noupoue YYY, Tandoğdu Y, Awadalla M (2019) On numerical techniques for solving the fractional logistic differential equation. Adv Differ Equ 2019(108):1687–1847

  • Pender J, Rand RH, Wesson E (2017) Queues with choice via delay differential equations. Int J Bifurc Chaos 27(4):1730016

  • Rus IA (2009) Remarks on Ulam stability of the operatorial equations. Fixed Point Theory 10(2):305–320

    MathSciNet  MATH  Google Scholar 

  • Ruschel S, Pereira T, Yanchuk S et al (2019) An SIQ delay differential equations model for disease control via isolation. J Math Biol 79:249–279

    Article  MathSciNet  Google Scholar 

  • Saker SH, Alzabut JO (2009) On the impulsive delay hematopoiesis model with periodic coefficients. Rocky Mt J Math 39(5):1657–1688

    Article  MathSciNet  Google Scholar 

  • Sales Teodoro G, Tenreiro Machado JA, Capelas de Oliveira E (2019) A review of definitions of fractional derivatives and other operators. J Comput Phys 388:195–208

    Article  MathSciNet  Google Scholar 

  • Shi Z, Li Y, Cheng H (2019) Dynamic analysis of a pest management smith model with impulsive state feedback control and continuous delay. Mathematics 7:591

    Article  Google Scholar 

  • Sousa JVdC, Capelas de Oliveira E (2018) On the \(\psi \)-Hilfer fractional derivative. Commun Nonlinear Sci Numer Simulat 60:72–91

    Article  MathSciNet  Google Scholar 

  • Sousa JVdC, Capelas de Oliveira E (2019) Leibniz type rule: \(\psi \)-Hilfer fractional operator. Commun Nonlinear Sci Numer Simulat 77:305–311

    Article  MathSciNet  Google Scholar 

  • Sousa JVdC, Oliveira DS, Capelas de Oliveira E (2021) A note on the mild solutions of Hilfer impulsive fractional differential equations. Chaos Solitons Fract 147:110944 (preprint)

    Article  MathSciNet  Google Scholar 

  • Stamova I, Stamov G (2016) Applied impulsive mathematical models. CMS books in mathematics. Springer, Switzerland

    MATH  Google Scholar 

  • Sweilam N, Khader M, Mahdy A (2012) Numerical studies for solving fractional-order logistic equation. Int J Pure Appl Math 78(8):1199–1210

    MATH  Google Scholar 

  • Tamen AT, Dumont Y, Tewa JJ et al (2017) A minimalistic model of tree-grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality. Math Comput Simul 133:265–297

    Article  MathSciNet  Google Scholar 

  • Tang S, Xiao Y, Cheke RA (2010) Dynamical analysis of plant disease models with cultural control strategies and economic thresholds. Math Comput Simul 80(5):894–921

    Article  MathSciNet  Google Scholar 

  • Wang J, Fečkan M, Zhou Y (2012) Ulam’s type stability of impulsive ordinary differential equations. J Math Anal Appl 365(1):258–264

    Article  MathSciNet  Google Scholar 

  • Wang J, Zhou Y, Feckan M (2012) Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput Math Appl 64(10):3389–3405

    Article  MathSciNet  Google Scholar 

  • Xiangsen L, Binxiang D (2019) Dynamics of a generalized predator-prey model with delay and impulse via the basic reproduction number. Math Methods Appl Sci 42:6878–6895

    Article  MathSciNet  Google Scholar 

  • Yu J (2018) Modeling mosquito population suppression based on delay differential equations. SIAM J Appl Math 78(6):3168–3187

    Article  MathSciNet  Google Scholar 

  • Zada A, Faisal S, Li Y (2016) On the Hyers–Ulam stability of first-order impulsive delay differential equations. J Funct Space 2016:1–6

    Article  MathSciNet  Google Scholar 

  • Zhang H, Chen L, Nieto JJ (2008) A delayed epidemic model with stage-structure and pulses for pest management strategy. Nonlinear Anal Real World Appl 9:1714–1726

    Article  MathSciNet  Google Scholar 

  • Zhang H, Georgescu P, Chen L (2008) On the impulsive controllability and bifurcation of a predator-pest model of IPM. Biosystems 93(3):151–171

    Article  Google Scholar 

  • Zhang X, Tang S, Cheke RA, et al (2016) Modeling the effects of augmentation strategies on the control of dengue fever with an impulsive differential equation. Bull Math Biol 78(10):1968–2010

Download references

Acknowledgements

J. Vanterler acknowledges the financial support of a PNPD-CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) scholarship of the Postgraduate Program in Applied Mathematics of IMECC-UNICAMP (88882.305834/2018-01). K. B. Lima acknowledges the financial support of a PhD scholarship of the Program in Applied Mathematics of IMECC-UNICAMP (CAPES(001) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico)(160331/2014-5)). We are grateful to the anonymous referees for the suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K B Lima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Vasily E. Tarasov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, K.B., Vanterler da C. Sousa, J. & de Oliveira, E.C. Ulam–Hyers type stability for \(\psi \)-Hilfer fractional differential equations with impulses and delay. Comp. Appl. Math. 40, 293 (2021). https://doi.org/10.1007/s40314-021-01686-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01686-1

Keywords

MSC codes

Navigation