Skip to main content
Log in

Tool Path Planning with Confined Scallop Height Error Using Optimal Connected Fermat Spirals

  • Published:
Communications in Mathematics and Statistics Aims and scope Submit manuscript

Abstract

In CNC machining, the tool path planning of the cutter plays an important role. In this paper, we generate a space-filling and continuous tool path for free-form surface represented by the triangular mesh with a confined scallop height. The tool path is constructed from connected Fermat spirals (CFS) but with fewer inflection points. Comparing with the newly developed CFS method, only about half of the number of inflection points are involved. Moreover, the kinematic constraints are simultaneously taken into account to increase the feedrates in machining. Finally, we use a micro-line trajectory technique to smooth the tool path. Experimental results and physical cutting tests are provided to illustrate and clarify our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Anotaipaiboon, W., Makhanov, S.S.: Curvilinear space-filling curves for five-axis machining. Comput. Aided Des. 40(3), 350–367 (2008). https://doi.org/10.1016/j.cad.2007.11.007

    Article  Google Scholar 

  2. Anotaipaiboon, W., Makhanov, S.S.: Tool path generation for five-axis NC machining using adaptive space-filling curves. Int. J. Prod. Res. 43(8), 1643–1665 (2005). https://doi.org/10.1080/00207540412331322948

    Article  Google Scholar 

  3. Au, C.: A path interval generation algorithm in sculptured object machining. Int. J. Adv. Manuf. Technol. 17, 558–561 (2001). https://doi.org/10.1007/s001700170138

    Article  Google Scholar 

  4. Chen, L., Zhang, R., Tang, K., Hu, P., Zhao, P., Li, Z., Han, Z.: A spiral-based inspection path generation algorithm for efficient five-axis sweep scanning of freeform surfaces. Comput. Aided Des. 124, 102838 (2020). https://doi.org/10.1016/j.cad.2020.102838

    Article  MathSciNet  Google Scholar 

  5. Chen, Y., Shen, L.Y., Yuan, C.M.: Collision and intersection detection of two ruled surfaces using bracket method. Comput. Aided Geom. Des. 28(2), 114–126 (2011). https://doi.org/10.1016/j.cagd.2010.11.002

    Article  MathSciNet  Google Scholar 

  6. Chiou, C.J., Lee, Y.S.: A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Comput. Aided Des. 34(5), 357–371 (2002). https://doi.org/10.1016/S0010-4485(01)00102-6

    Article  Google Scholar 

  7. Choi, B.K., Park, S.C.: A pair-wise offset algorithm for 2D point-sequence curve. Comput. Aided Des. 31(12), 735–745 (1999). https://doi.org/10.1016/S0010-4485(99)00060-3

    Article  Google Scholar 

  8. Cox, J.J., Takezaki, Y., Ferguson, H.R.P., Kohkonen, K.E., Mulkay, E.L.: Space-filling curves in tool-path applications. Comput. Aided Des. 26(3), 215–224 (1994). https://doi.org/10.1016/0010-4485(94)90044-2

    Article  Google Scholar 

  9. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: A new approach to computing distance based on heat flow. ACM Trans. Graph (2013). https://doi.org/10.1145/2516971.2516977

    Article  Google Scholar 

  10. Elber, G., Cohen, E.: Toolpath generation for freeform surface models. Comput. Aided Des. 26, 490–496 (1994). https://doi.org/10.1016/0010-4485(94)90070-1

    Article  Google Scholar 

  11. Farouki, R.T., Tsai, Y.F., Yuan, G.F.: Contour machining of free-form surfaces with real-time PH curve CNC interpolators. Comput. Aided Geom. Des. 16(1), 61–76 (1999). https://doi.org/10.1016/S0167-8396(98)00032-6

    Article  MathSciNet  Google Scholar 

  12. Giri, V., Bezbaruah, D., Bubna, P., Choudhury, A.R.: Selection of master cutter paths in sculptured surface machining by employing curvature principle. Int, J. Mach. Tools Manuf., 45(10):1202–1209, (2005). ISSN 0890-6955. https://doi.org/10.1016/j.ijmachtools.2004.12.008

  13. Gu, X., Yau, S.T.: Computational Conformal Geometry. Higher Education Press, (2020)

  14. Held, M., Lukács, G., Andor, L.: Pocket machining based on contour-parallel tool paths generated by means of proximity maps. Comput. Aided Des. 26(3), 189–203 (1994). https://doi.org/10.1016/0010-4485(94)90042-6

    Article  Google Scholar 

  15. Held, M.: Voronoi diagrams and offset curves of curvilinear polygons. Comput. Aided Des. 30(4), 287–300 (1998). https://doi.org/10.1016/S0010-4485(97)00071-7

    Article  Google Scholar 

  16. Hu, P., Chen, L., Tang, K.: Efficiency-optimal iso-planar tool path generation for five-axis finishing machining of freeform surfaces. Comput. Aided Des. 83, 33–50 (2017). https://doi.org/10.1016/j.cad.2016.10.001

    Article  Google Scholar 

  17. Huo, G., Jiang, X., Su, C., Lu, Z., Sun, Y., Zheng, Z., Xue, D.: CNC tool path generation for freeform surface machining based on preferred feed direction field. Int. J. Prec. Eng. Manuf. 20, 777–790 (2019). https://doi.org/10.1007/s12541-019-00084-2

    Article  Google Scholar 

  18. Kim, B.H., Choi, B.K.: Machining efficiency comparison direction-parallel tool path with contour-parallel tool path. Comput. Aided Des. 34(2), 89–95 (2002). https://doi.org/10.1016/S0010-4485(00)00139-1

    Article  Google Scholar 

  19. Lee, E.: Contour offset approach to spiral toolpath generation with constant scallop height. Comput. Aided Des. 35(6), 511–518 (2003). https://doi.org/10.1016/S0010-4485(01)00185-3

    Article  Google Scholar 

  20. Lee, Y., Ji, H.: Surface interrogation and machining strip evaluation for 5-axis CNC die and mold machining. Int. J. Prod. Res. 35(1), 225–252 (1997). https://doi.org/10.1080/002075497196064

    Article  ADS  Google Scholar 

  21. Lee, Y.S.: Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining. Comput. Aided Des. 30(7), 559–570 (1998). https://doi.org/10.1016/S0010-4485(98)00822-7

    Article  Google Scholar 

  22. Liang, F., Kang, C., Lu, Z., Fang, F.: Iso-scallop tool path planning for triangular mesh surfaces in multi-axis machining. Robot. Comput. Integ. Manuf. 72, 102206 (2021). https://doi.org/10.1016/j.rcim.2021.102206

    Article  Google Scholar 

  23. Lin, R., Koren, Y.Y.: Efficient tool-path planning for machining free-form surfaces. J. Eng. Ind. 118(1), 20–28 (1996). https://doi.org/10.1115/1.2803642

    Article  Google Scholar 

  24. Loney, G.C., Ozsoy, T.M.: NC machining of free form surfaces. Comput. Aided Des. 19(2), 85–90 (1987). https://doi.org/10.1016/S0010-4485(87)80050-7

    Article  Google Scholar 

  25. Marshall, S., Griffiths, J.G.: A new cutter-path topology for milling machines. Comput. Aided Des. 26(3), 204–214 (1994). https://doi.org/10.1016/0010-4485(94)90043-4

    Article  Google Scholar 

  26. Min, C.: A new iso-scallop height tool path planning method in three-dimensional space. Comput. Aided Draft. Des. Manuf. 22, 35–42 (2012)

    ADS  Google Scholar 

  27. Pi, J., Red, E., Jensen, G.: Grind-free tool path generation for five-axis surface machining. Comput. Integr. Manuf. Syst. 11(4), 337–350 (1998). https://doi.org/10.1016/S0951-5240(98)00033-0

    Article  Google Scholar 

  28. Salman, M., Mansor, A., Hinduja, S., Owodunni, O.O.: Voronoi diagram-based tool path compensations for removing uncut material in 2\(\frac{1}{2}\)D pocket machining. Comput. Aided Des. 38(3), 194–209 (2006). https://doi.org/10.1016/j.cad.2005.09.001

    Article  Google Scholar 

  29. Sarma, S.E.: The crossing function and its application to zig-zag tool paths. Comput. Aided Des. 31(4), 881–890 (1999). https://doi.org/10.1016/S0010-4485(99)00075-5

    Article  MathSciNet  Google Scholar 

  30. Shen, H., Li, J., Zhou, L.: Estimation of triangular mesh vertex normal vector and discrete curvature. Comput. Eng. Appl. 41(26), 12–15 (2005)

    Google Scholar 

  31. Su, C., Jiang, X., Huo, G., Sun, Y., Zheng, Z.: Initial tool path selection of the iso-scallop method based on offset similarity analysis for global preferred feed directions matching. Int. J. Adv. Manuf. Technol. 106, 2675–2687 (2020). https://doi.org/10.1007/s00170-019-04789-6

    Article  Google Scholar 

  32. Sun, Y., Xu, J., Jin, C., Guo, D.: Smooth tool path generation for 5-axis machining of triangular mesh surface with nonzero genus. Comput. Aided Des. 79, 60–74 (2016). https://doi.org/10.1016/j.cad.2016.06.001

    Article  Google Scholar 

  33. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. Proc. IEEE Int. Conf. Comput. Vis. (1995). https://doi.org/10.1109/ICCV.1995.466840

    Article  Google Scholar 

  34. Xu, J., Xu, L., Sun, Y., Lee, Y., Zhao, J.: A method of generating spiral tool path for direct three-axis computer numerical control machining of measured cloud of point. ASME J. Comput. Inf. Sci. Eng 19(4), 041015 (2019). https://doi.org/10.1115/1.4043532

    Article  Google Scholar 

  35. Xu, K., Li, Y.: Region based five-axis tool path generation for freeform surface machining via image representation. Robot. Comput. Integ. Manuf. 57, 230–240 (2019). https://doi.org/10.1016/j.rcim.2018.12.006

    Article  Google Scholar 

  36. Zhang, L., Sun, R., Gao, X.S., Li, H.: High speed interpolation for micro-line trajectory and adaptive real-time look-ahead scheme in CNC machining. SCI. CHINA Technol. Sci. 54(6), 1481–1495 (2011). https://doi.org/10.1007/s11431-011-4329-9

    Article  ADS  Google Scholar 

  37. Zhao, H., Gu, F., Huang, Q.X., Garcia, J., Chen, Y., Tu, C., Benes, B., Zhang, H., Cohen-Or, D., Chen, B.: Connected fermat spirals for layered fabrication. ACM Trans. Graph (2016). https://doi.org/10.1145/2897824.2925958

    Article  Google Scholar 

  38. Zhao, H., Zhang, H., Xin, S., Deng, Y., Tu, C., Wang, W., Cohen-Or, D., Chen, B.: DSCarver: decompose-and-spiral-carve for subtractive manufacturing. ACM Trans. Graph (2018). https://doi.org/10.1145/3197517.3201338

    Article  Google Scholar 

  39. Zhu, H., Liu, Z., Fu, J.: Spiral tool-path generation with constant scallop height for sheet metal CNC incremental forming. Int. J. Adv. Manuf. Technol. 54(9–12), 911–919 (2011). https://doi.org/10.1007/s00170-010-2996-5

    Article  Google Scholar 

  40. Zou, Q., Zhang, J., Deng, B., Zhao, J.: Iso-level tool path planning for free-form surfaces. Comput. Aided Des. 53, 117–125 (2014). https://doi.org/10.1016/j.cad.2014.04.006

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Haisen Zhao for providing us the tool path point sequence in Fig. 19, and Shenyang Golding Nc Intelligence Tech. Co., Ltd for physical cutting test. This work is partially supported by Beijing Natural Science Foundation under Grant Z190004, National Key Research and Development Program of China under Grant 2020YFA0713703, NSFC(Nos. 11688101, 61872332) and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, HY., Yuan, CM. & Shen, LY. Tool Path Planning with Confined Scallop Height Error Using Optimal Connected Fermat Spirals. Commun. Math. Stat. 12, 55–78 (2024). https://doi.org/10.1007/s40304-021-00280-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40304-021-00280-5

Keywords

Mathematics Subject Classification

Navigation