Skip to main content
Log in

An \(L_q(L_p)\)-theory for space-time non-local equations generated by Lévy processes with low intensity of small jumps

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We investigate an \(L_{q}(L_{p})\)-regularity (\(1<p,q<\infty \)) theory for space-time nonlocal equations of the type \(\partial ^{\alpha }_{t}u = \mathcal {L}u +f\). Here, \(\partial ^{\alpha }_{t}\) is the Caputo fractional derivative of order \(\alpha \in (0,1)\) and \(\mathcal {L}\) is an integro-differential operator

$$\begin{aligned} \mathcal {L}u(x) = \int _{\mathbb {R}^{d}} \left( u(x)-u(x+y) -\nabla u (x) \cdot y {\textbf{1}}_{|y|\le 1} \right) j_{d}(|y|)dy \end{aligned}$$

which is the infinitesimal generator of an isotropic unimodal Lévy process. We assume that the jumping kernel \(j_{d}(r)\) is comparable to \(r^{-d} \ell (r^{-1})\), where \(\ell \) is a continuous function satisfying

$$\begin{aligned} C_{1}\left( \frac{R}{r}\right) ^{\delta _{1}} \le \frac{\ell (R)}{\ell (r)} \le C_{2} \left( \frac{R}{r} \right) ^{\delta _{2}} \quad \text {for}\;\; \,1\le r\le R<\infty , \end{aligned}$$

where \(0\le \delta _{1}\le \delta _{2}<2\). Hence, \(\ell \) can be slowly varying at infinity. Our result covers \(\mathcal {L}\) whose Fourier multiplier \(\Psi (\xi )\) satisfies \(\Psi (\xi )\asymp -\log {(1+|\xi |^{\beta })}\) for \(\beta \in (0,2]\) and \(\Psi (\xi ) \asymp -(\log (1+|\xi |^{\beta /4}))^{2}\) for \(\beta \in (0,2)\) by taking \(\ell (r) \asymp 1\) and \(\ell (r) \asymp \log {(1+r^{\beta })}\) for \(r\ge 1\) respectively. In this article, we use the Calderón–Zygmund approach and function space theory for operators having slowly varying symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  2. Bogdan, K., Grzywny, T., Ryznar, M.: Density and tails of unimodal convolution semigroups. J. Funct. Anal. 266(4), 3543–3571 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanism, models and physical applications. Phys. Rep. 195(4–5), 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Clément, P., Prüss, J.: Global existence for a semilinear parabolic Volterra equation. Math. Z. 209(1), 17–26 (1992)

    Article  MathSciNet  Google Scholar 

  5. Chen, Z.-Q.: Time fractional equations and probabilistic representation. Chaos Soliton Fract. 102, 168–174 (2017)

    Article  MathSciNet  Google Scholar 

  6. Chen, Z.-Q., Kim, P., Kumagai, T., Wang, J.: Time fractional Poisson equations: representations and estimates. J. Funct. Anal. 278(2), 108311 (2020)

    Article  MathSciNet  Google Scholar 

  7. Cho, S., Kang, J., Kim, P.: Estimates of heat kernels for unimodal Lévy processes with low intensity of small jumps. J. Lond. Math. Soc. 104(2), 823–864 (2021)

    Article  MathSciNet  Google Scholar 

  8. Dong, H., Jung, P., Kim, D.: Boundedness of non-local operators with spatially dependent coefficients and \(L_{p}\)-estimates for non-local equations. Calc. Var. 62(2), 62 (2023)

    Article  Google Scholar 

  9. Dong, H., Kim, D.: On \(L_{p}\)-estimates for a class of non-local elliptic equations. J. Funct. Anal. 262(3), 1166–1199 (2012)

    Article  MathSciNet  Google Scholar 

  10. Dong, H., Kim, D.: An approach for weighted mixed-norm estimates for parabolic equations with local and non-local time derivatives. Adv. Math. 377, 107494 (2021)

    Article  MathSciNet  Google Scholar 

  11. Dong, H., Liu, Y.: Sobolev estimates for fractional parabolic equations with space-time non-local operators. Calc. Var. 62(3), 96 (2023)

    Article  MathSciNet  Google Scholar 

  12. Farkas, W., Jacob, N., Schilling, R.L.: Function Spaces Related to Continuous Negative Definite Functions: \(\psi \)-Bessel Potential Spaces. Polska Akademia Nauk, Instytut Mathematyczny (2001)

  13. Fogedby, H.C.: Lévy flights in random environments. Phys. Rev. Lett. 73(19), 2517–2520 (1994)

    Article  Google Scholar 

  14. Grzywny, T., Ryznar, M., Trojan, B.: Asymptotic behaviour and estimates of slowly varying convolution semigroups. Int. Math. Res. Not. IMRN. 2019(23), 7193–7258 (2019)

    Article  MathSciNet  Google Scholar 

  15. Kim, I., Kim, K., Kim, P.: An \(L_{p}\)-theory for diffusion equations related to stochastic processes with non-stationary independent increment. Trans. Am. Math. Soc. 371(5), 3417–3450 (2019)

    Article  Google Scholar 

  16. Kim, I., Kim, K., Kim, P.: Parabolic Littlewood–Paley inequality for \(\phi (-\Delta )\)-type operators and applications to stochastic integro-differential equations. Adv. Math. 249, 161–203 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kim, I., Kim, K., Lim, S.: An \(L_q(L_p)\)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kim, K., Park, D., Ryu, J.: An \(L_{q}(L_{p})\)-theory for diffusion equations with space-time nonlocal operators. J. Differ. Equ. 287(25), 276–427 (2021)

    Google Scholar 

  19. Kim. K., Park. D., Ryu, J.: A Sobolev space theory for the stochastic partial differential equations with space-time non-local operators J. Evol. Equ. 22(57) (2022)

  20. Kim, P., Mimica, A.: Harnack inequalities for subordinate Brownian motions. Electron. J. Probab. 17(27), 1–23 (2012)

    MathSciNet  Google Scholar 

  21. Kim, P., Song, R., Vondraček, Z.: Global uniform boundary Harnack principle with explicit decay rate and its application. Stoch. Proc. Appl. 124(1), 235–267 (2014)

    Article  MathSciNet  Google Scholar 

  22. Kulczcki, T., Ryznar, M.: Gradient estimates of harmonic functions and transition densities for Lévy processes. Trans. Am. Math. Soc. 368(1), 281–318 (2016)

    Article  Google Scholar 

  23. Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker–Planck equation approach. Phys. Rev. Lett. 82(18), 3563–3567 (1999)

    Article  Google Scholar 

  24. Mikulevičius, R., Phonsom, C.: On the Cauchy problem for integro-differential equations in the scale of spaces of generalized smoothness. Potential Anal. 50(3), 467–519 (2019)

    Article  MathSciNet  Google Scholar 

  25. Mikulevičius, R., Phonsom, C.: On \(L^{p}\)-theory for parabolic and elliptic integro-differential equations with scalable operators in the whole space. Stoch. Partial Differ. Equ. 5(4), 472–519 (2017)

    MathSciNet  Google Scholar 

  26. Mikulevičius, R., Pragarauskas, H.: On the Cauchy problem for integro-differential operators in Sobolev classes and the martingale problem. J. Differ. Equ. 256(4), 1581–1626 (2014)

    Article  MathSciNet  Google Scholar 

  27. Mikulevičius, R., Pragarauskas, H.: On the Cauchy problems for certain integro-differential operators in Sobolev and Hölder spaces. Lith. Math. J. 32(2), 238–264 (1992)

    Article  Google Scholar 

  28. Prüss, J.: Evolutionary Integral Equations and Applications. Birkhäuser, Basel (2013)

    Google Scholar 

  29. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions Theory and Applications, 2nd edn. Walter de Gruyter & Co., Berlin (2012)

    Book  Google Scholar 

  30. Šikić, H., Song, R., Vondraček, Z.: Potential theory of geometric stable processes. Probab. Theory Relat. Fields. 135(4), 547–575 (2006)

    Article  MathSciNet  Google Scholar 

  31. Stein, E.M., Murphy, T.S.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    Google Scholar 

  32. Watanabe, T.: The isoperimetric inequality for isotropic unimodal Lévy processes. Z. Wahrsch. Verw. Gebiete. 63(4), 487–499 (1983)

    Article  MathSciNet  Google Scholar 

  33. Zacher, R.: Maximal regularity of type \(L_p\) for abstract parabolic Volterra equations. J. Evol. Equ. 5(1), 79–103 (2005)

    Article  MathSciNet  Google Scholar 

  34. Zhang, X.: \(L_{p}\)-maximal regularity of nonlocal parabolic equations and applications. Ann. I. H. Poincaré-AN. 30, 573–614 (2013)

    Article  Google Scholar 

  35. Zhang, X.: \(L^p\)-solvability of nonlocal parabolic equations with spatial dependent and non-smooth kernels. In: Emerging Topics on Differential Equations and Their Applications, pp. 247–262

Download references

Acknowledgements

The authors are sincerely grateful to the anonymous referee for careful reading, valuable comments, finding errors. The paper could be considerably improved by the referee’s comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daehan Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by BK21 SNU Mathematical Sciences Division. The second author was supported by Samsung Science & Technology Foundation (SSTF)’s grants (No. SSTF-BA1401-51).

Appendix

Appendix

Lemma A.1

  1. (i)

    Suppsose that \(\ell _{1}\in \mathcal {G}\) and let \(\ell _{2}\) be a function which satisfies \(\ell _{2} \in (a,b)\) for some \(0<a<b<\infty \). Then \(\ell _{1}\ell _{2}\in \mathcal {G}\).

  2. (ii)

    Suppose \(\ell \in \mathcal {G}\). Then for any \(b>0\), \(r\mapsto \ell (r^b)\) belongs to \(\mathcal {G}\).

  3. (iii)

    Let \(\ell _1\in \mathcal {G}\) and \(\ell _2\) be an increasing function satisfying \(\ell _2\ge c\) on \([1,\infty )\) for some \(c>0\). Then, \(\ell _1/\ell _2\in \mathcal {G}\).

  4. (iv)

    Let \(\ell _{1}(r)=\log {(1+r)}\) and let \(\ell _{k+1}=\ell _{k}\circ \ell _{1}(r)\) for \(k\in \mathbb {N}\). Then for any \(n\in \mathbb {N}\) \(k_{1},\dots ,k_{n}\in \mathbb {N}\) and \(b_{1},\dots ,b_{n}>0\) we have

    $$\begin{aligned} \Lambda (r) = \prod _{i=1}^{n} (\ell _{k_{i}}(r))^{b_{i}} \in \mathcal {G}. \end{aligned}$$
  5. (v)

    For \(b\in (0,1/2)\), \(\ell (r)=(e^{(\log {(1+r)})^{b}}-1) \in \mathcal {G}\).

Proof

(i) & (ii) Trivial.

(iii) Let \(\ell =\ell _1/\ell _2\). Using that \(\ell _2\ge c\), \(\ell _2\) is increasing and \(\ell _1\in \mathcal {G}\), we see that for any \(a>0\)

$$\begin{aligned}&\sup _{r>1} \int ^{r}_{1}\frac{\ell _1(s)}{s\ell _2(s)}ds\cdot \exp {\left( -\frac{a\ell _2(r)}{\ell _1(r)}\int ^{r}_{1}\frac{\ell _1(s)}{s\ell _2(s)}ds \right) }\\&\le \sup _{r>1}c^{-1} \int ^{r}_{1}\frac{\ell _1(s)}{s}ds\cdot \exp {\left( -\frac{a}{\ell _1(r)}\int ^{r}_{1}\frac{\ell _1(s)}{s}ds \right) } \le C. \end{aligned}$$

(iv) Let \({\tilde{\Lambda }}=(\ell _{1})^{2}\Lambda \). Then \({\tilde{\Lambda }}(r) = \prod ^{n+1}_{i=1} (\ell _{k_{i}}(r))^{b_{i}}\), and we may set \(k_{1}=1\), \(b_{1}=2\). If we show that \({\tilde{\Lambda }} \in \mathcal {G}\), then due to (iii), it follows that \(\Lambda \in \mathcal {G}\). Thus we will show that \({\tilde{\Lambda }} \in \mathcal {G}\). Set \(\ell _{0}(s)=s\). By using the change of variable,

$$\begin{aligned} \int _{1}^{r}{\tilde{\Lambda }}(s) \, s^{-1} ds&\asymp \int _{\log 2}^{\log {(1+r)}} \prod _{i=1}^{n+1} (\ell _{k_{i}-1}(s))^{b_{i}} ds. \end{aligned}$$

It is easy to see that

$$\begin{aligned} \int _{\log 2}^{\log {(1+r)}} \prod _{i=1}^{n+1} (\ell _{k_{i}-1}(s))^{b_{i}} ds \le C \log {(1+r)}{\tilde{\Lambda }}(r). \end{aligned}$$

Moreover, by the integration by parts and \(((\ell _{k_{i}-1})^{b_{i}})'(s) \le C(b_{i},k_{i})\),

$$\begin{aligned}&\int _{\log 2}^{\log {(1+r)}} \prod _{i=1}^{n+1} (\ell _{k_{i}-1}(s))^{b_{i}} ds \\&= \log {(1+r)}{\tilde{\Lambda }}(r)-\log {2}{\tilde{\Lambda }}(1) - \int _{\log 2}^{\log {(1+r)}} \left( \prod _{i=1}^{n+1} (\ell _{k_{i}-1}(\cdot ))^{b_{i}} \right) '(s) \, s\,ds \\&\ge \log {(1+r)}{\tilde{\Lambda }}(r)-\log {2}{\tilde{\Lambda }}(1) - C \int _{\log 2}^{\log {(1+r)}} s\, ds \\&\ge \log {(1+r)}{\tilde{\Lambda }}(r)-\log {2}{\tilde{\Lambda }}(1) - C (\log {(1+r)})^{2}. \end{aligned}$$

Since \(k_{1}=1\) and \(b_{1}=2\) (for \({\tilde{\Lambda }}\)), there exists \(M>1\) such that

$$\begin{aligned} \int _{1}^{r}{\tilde{\Lambda }}(s)\, s^{-1} ds \ge \frac{1}{2} \log {(1+r)}{\tilde{\Lambda }}(r),\quad \text {for}\;\;r>M. \end{aligned}$$

Thus, we have

$$\begin{aligned}&\sup _{r>M} \int _{1}^{r} {\tilde{\Lambda }}(s) \,s \,ds \cdot \exp {\left( -\frac{a}{{\tilde{\Lambda }}(r)} \int _{1}^{r} {\tilde{\Lambda }}(s) \,s \,ds \right) } \\&\le C \sup _{r>M} \log {(1+r)}{\tilde{\Lambda }}(r) \cdot \exp {\left( -c \log {(1+r)} \right) } \le C. \end{aligned}$$

The above inequality implies that \(\Lambda \in \mathcal {G}\) since it is bounded on (1, M].

(v) By the change of variable, we have

$$\begin{aligned} \int _{1}^{r} \ell (s) s^{-1} \asymp \int _{\log 2}^{\log {(1+r)}} (e^{s^{b}}-1) ds \le C e^{\left( (\log {(1+r)})^{b} \right) } \log {(1+r)}. \end{aligned}$$

Also, by the integration by parts, we obtain

$$\begin{aligned} \int _{\log 2}^{\log {(1+r)}} (e^{s^{b}} - 1) ds&= \ell (r) \log {(1+r)} - \ell (1)\log 2 - b \int _{\log 2}^{\log {(1+r)}} s^{b} e^{s^{b}} ds \\&\ge \ell (r) \log {(1+r)} - \ell (1)\log 2 \\&\quad - b (\log {(1+r)})^{b} \int _{\log 2}^{\log {(1+r)}} (e^{s^{b}}-1) ds \\ {}&\quad - b(\log {(1+r)})^{b+1} . \end{aligned}$$

This shows that there exists \(M>1\) such that for \(r>M\)

$$\begin{aligned} \frac{1}{\ell (r)} \int _{\log 2}^{\log {(1+r)}} (e^{s^{b}} - 1) ds \ge (\log {(1+r)})^{1-b} -C. \end{aligned}$$

Hence, we have (recall that \(b\in (0,1/2))\)

$$\begin{aligned}&\sup _{r>M} \int ^{r}_{1}\frac{\ell (s)}{s}ds\cdot \exp {\left( -\frac{a}{\ell (r)}\int ^{r}_{1}\frac{\ell (s)}{s}ds \right) } \\&\le C \sup _{r>M} \left( e^{\left( (\log {(1+r)})^{b} \right) } \log {(1+r)} e^{ \left( - c (\log {(1+r)})^{1-b} \right) } \right) \le C. \end{aligned}$$

Thus \(\ell \in \mathcal {G}\). The lemma is proved. \(\square \)

Lemma A.2

Let \(f:(0,\infty ) \rightarrow (0,\infty )\) be an increasing continuous function which satisfies \(\sup _{0<r<1}f(r)<\infty \), \(\lim _{r\rightarrow \infty }f(r)=\infty \) and

$$\begin{aligned} \frac{f(R)}{f(r)} \le c_{1} \left( \frac{R}{r} \right) ^{\delta } \quad \text {for}\;\; 1\le r\le R<\infty \end{aligned}$$

for some \(c_{1}, \delta >0\). Then there is a strictly increasing continuous function \({\tilde{f}}:(0,\infty ) \rightarrow (0,\infty )\) satisfying

$$\begin{aligned} f(r) \le {\tilde{f}}(r) \le C f(r) \quad \text {for}\; \, r>0, \end{aligned}$$

where the constant C does not depend on r.

Proof

We prove the lemma by constructing \({\tilde{f}}\). Extend f to \(\mathbb {R}_{+} \cup \{0\}\) by

$$\begin{aligned} f(0) = \lim _{r\downarrow 0 } f(r). \end{aligned}$$

Now let \(A= \{ r\ge 0: \exists \, s\ge 0, s\ne r ~ \text {such that} ~ f(r)=f(s) \}\). Then, we can check that \(A=\cup _{k=1}^{\infty }[r_{k},l_{k}]\), where \([r_{k},l_{k}]\) are pairwise disjoint closed intervals.

Case 1. Assume that \(f(0)=0\) or f(r) is strictly increasing for \(r\le 1\). Then, there is a positive number \(a>0\) such that \(A\subset [0,a)^{c}\). Note that for \([r_{k},l_{k}]\) we can choose \(\varepsilon _{k}\in (0,1)\) such that \((l_{k},l_{k}+\varepsilon _{k}]\subset A^{c}\). Now define \({\tilde{f}}_{k}\) on \([r_{k},r_{l}+\varepsilon _{k}]\) as

$$\begin{aligned} {\tilde{f}}_{k}(r) = \frac{f(l_{k}+\varepsilon _{k})-f(r_{k})}{l_{k}+\varepsilon _{k}-r_{k}}(r-r_{k}) + f(r_{k}). \end{aligned}$$

Then \({\tilde{f}}_{k}\) is continuous, strictly increasing on \([r_{k},l_{k}+\varepsilon _{k}]\) and it satisfies \({\tilde{f}}_{k}(r_{k})=f(r_{k})\), and \({\tilde{f}}_{k}(l_{k}+\varepsilon _{k}) = f(l_{k}+\varepsilon _{k})\). Moreover, on \([r_{k},l_{k}+\varepsilon _{k}]\), \({\tilde{f}}_{k}\) satisfies

$$\begin{aligned} 1 \le \frac{{\tilde{f}}_{k}(r)}{f(r)} \le \frac{f(l_{k}+\varepsilon _{k})}{f(r_{k})} \le c_{1} \left( \frac{l_{k}+\varepsilon _{k}}{l_{k}} \right) ^{\delta } \le C(a) \end{aligned}$$

since \(f(r_{k})=f(l_{k})\), \(l_{k}>r_{k}\ge a\). Now define \({\tilde{A}} = \cup _{k=1}^{\infty }[r_{k},l_{k}+\varepsilon _{k}]\) and

$$\begin{aligned} {\tilde{f}}(r) = {\textbf{1}}_{{\tilde{A}}^{c}}(r)f(r) + \sum _{k=1}^{\infty } {\textbf{1}}_{[r_{k},l_{k}+\varepsilon _{k}]} {\tilde{f}}_{k}(r). \end{aligned}$$
(A.1)

Then \({\tilde{f}}\) is a desired function.

Case 2. Now assume that \(f(0)\ne 0\) and f(r) is not strictly increasing for \(r\le 1\). Then there exists \(b\ge 1\) such that \([0,b]=[r_{1},l_{1}]\). Take \(\varepsilon _{1}\) and \({\tilde{f}}_{1}\) for \([r_{1},l_{1}]\) corresponding to \(\varepsilon _{k}\) and \({\tilde{f}}_{k}\) in above case. Then on \([r_{1},l_{1}]\), we have

$$\begin{aligned} 1 \le \frac{{\tilde{f}}_{1}(r)}{f(r)} \le \frac{f(b+\varepsilon _{1})}{f(0)} \le c_{1} \left( \frac{b+\varepsilon }{b} \right) ^{\delta } \le C(b) \end{aligned}$$

since \(f(0)=f(b)>0\). For other k, we have the same result by following Case 1. Hence, by taking \({\tilde{f}}\) as in (A.1), the lemma is proved. \(\square \)

Lemma A.3

Let \(f:(0,\infty )\rightarrow (0,\infty )\) be a strictly increasing continuous function and \(f^{-1}\) be its inverse. Suppose that there exist \(c,\gamma >0\) such that \((f(R)/f(r))\le c(R/r)^\gamma \) for \(0<r\le R<\infty \). Then, for any \(k>0\), there exists \(C>0\) such that for any \(b>0\)

$$\begin{aligned} \int _{(f(b^{-1}))^{-1}}^\infty s^{-1}f^{-1}(s^{-1})^k ds \le Cb^{-k}. \end{aligned}$$

Proof

By the scaling property of f with \(R=b^{-1}\) and \(r=f^{-1}(s^{-1})\), and the fact that \(f(f^{-1}(s^{-1}))= s^{-1}\), we see that

$$\begin{aligned} \frac{f(b^{-1})}{s^{-1}} \le c\left( \frac{b^{-1}}{f^{-1}(s^{-1})}\right) ^{\gamma } \quad \text {for} \quad s>(f(b^{-1}))^{-1}. \end{aligned}$$

Thus,

$$\begin{aligned} \begin{aligned} \int _{(f(b^{-1}))^{-1}}^\infty s^{-1}f^{-1}(s^{-1})^k ds&\le Cb^{-k}f(b^{-1})^{-k/\gamma } \int _{(f(b^{-1}))^{-1}}^\infty s^{-1-k/\gamma } ds = Cb^{-k}. \end{aligned} \end{aligned}$$

\(\square \)

We use the following lemma with \(f(r) = h(r^{-1})\). Note that by using (2.12), one can check that \(h(r^{-1})\) is a strictly increasing function satisfying \(h(R^{-1})\le c (R/r)^{2} h(r^{-1})\) for any \(0<r<R\).

Lemma A.4

Let \(f:(0,\infty )\rightarrow (0,\infty )\) be a strictly increasing function and \(f^{-1}\) be its inverse. Suppose that there exist \(c,\gamma >0\) such that \((f(R)/f(r))\le c(R/r)^\gamma \) for \(0<r\le R<\infty \). Then, there exists \(C>0\) such that for any \(b>0\)

$$\begin{aligned} \int _{(f(b^{-1}))^{-1/\alpha }}^\infty \int _{b\le |y| \le (f^{-1}(s^{-\alpha }))^{-1}} \int _{(f(|y|^{-1}))^{-1}}^{2s^{\alpha }} (f^{-1}(r^{-1}))^{d+1} s^{-\alpha -1} dr dy ds\le Cb^{-1}. \end{aligned}$$

Proof

By the change of variable and Fubini’s theorem and Lemma A.3,

$$\begin{aligned}&\int _{(f(b^{-1}))^{-1/\alpha }}^\infty \int _{b\le |y| \le (f^{-1}(s^{-\alpha }))^{-1}} \int _{(f(|y|^{-1}))^{-1}}^{2s^{\alpha }} f^{-1}(r^{-1})^{d+1} s^{-\alpha -1} dr dy ds\\&=C\int _{(f(b^{-1}))^{-1/\alpha }}^\infty \int _{b}^{(f^{-1}(s^{-\alpha }))^{-1}} \int _{(f(\rho ^{-1}))^{-1}}^{2s^{\alpha }} f^{-1}(r^{-1})^{d+1} s^{-\alpha -1}\rho ^{d-1} dr d\rho ds\\&\le C\int _{(f(b^{-1}))^{-1/\alpha }}^\infty \int _{(f(b^{-1}))^{-1}}^{2s^{\alpha }}\int _{0}^{(f^{-1}(r^{-1}))^{-1}} f^{-1}(r^{-1})^{d+1} s^{-\alpha -1}\rho ^{d-1} d\rho dr ds\\&\le C\int _{(f(b^{-1}))^{-1/\alpha }}^\infty \int _{(f(b^{-1}))^{-1}}^{2s^{\alpha }} f^{-1}(r^{-1}) s^{-\alpha -1} dr ds\\&\le C\int _{(f(b^{-1}))^{-1}}^\infty \int _{(r/2)^{1/\alpha }}^{\infty } f^{-1}(r^{-1}) s^{-\alpha -1} ds dr \\&\le C\int _{(f(b^{-1}))^{-1}}^\infty r^{-1}f^{-1}(r^{-1}) dr \le Cb^{-1}. \end{aligned}$$

\(\square \)

Lemma A.5

Let \(\alpha \in (0,1)\). Suppose the function \(\ell \) satisfies Assumption 2.3 (i) let \(\kappa (b) = (h(b))^{-1/\alpha }\) and let \(t_{1}>0\) be taken from Lemma 3.2. Then, there exists \(C>0\) depending only on \(\alpha ,\kappa _{1},\kappa _{2},d,\ell ,C_{0},C_{1},C_{2}\), and \({\varvec{\delta }}\) such that for any \(b>0\)

$$\begin{aligned}&\int _{\kappa (b)}^\infty \int _{b\le |y| \le h^{-1}(s^{-\alpha })} \int _{0}^{t_1} |D_{x}p_{d} (r,y)| |\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds\le Cb^{-1}, \end{aligned}$$
(A.2)
$$\begin{aligned}&\int _{\kappa (4b)}^{\infty } \int _{|y|\le 4b} \int _{0}^{t_1} p_{d} (r,y)|\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds\le C. \end{aligned}$$
(A.3)

Proof

By (2.15), (2.16), Proposition 3.2 (i), (4.2) and (4.3),

$$\begin{aligned} \begin{aligned}&\int _{\kappa (b)}^\infty \int _{b\le |y| \le h^{-1}(s^{-\alpha })} \int _{0}^{t_1} |D_{x}p_{d} (r,y)| |\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds \\&\le \int _{\kappa (b)}^\infty \int _{b}^{h^{-1}(s^{-\alpha })} \int _{0}^{\infty } rK(\rho ) \rho ^{-2} e^{-Crh(\rho )}s^{-\alpha -1} dr d\rho ds \\&\le C \int _{(h(b))^{-1/\alpha }}^\infty \int _{b}^{h^{-1}(s^{-\alpha })} \rho ^{-2} \frac{1}{h(\rho )} s^{-\alpha -1} d\rho ds, \end{aligned} \end{aligned}$$

where we used the relations \(se^{-s} \le Ce^{-s/2}\) (\(s>0\)) and \(K(\rho )\le h(\rho )\) for the last inequality. By Fubini’s theorem we have

$$\begin{aligned} \begin{aligned}&\int _{\kappa (b)}^\infty \int _{b\le |y| \le h^{-1}(s^{-\alpha })} \int _{0}^{t_1} |D_{x}p_{d} (r,y)| |\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds \\&\le C \int _{(h(b))^{-1/\alpha }}^\infty \int _{b}^{h^{-1}(s^{-\alpha })} \rho ^{-2} \frac{1}{h(\rho )} s^{-\alpha -1} d\rho ds \\&\le C \int _{b}^{\infty }\int _{(h(\rho ))^{-1/\alpha }}^{\infty } s^{-\alpha -1} \frac{1}{h(\rho )} \rho ^{-2} ds d\rho \le C \int _{b}^{\infty } \rho ^{-2} d\rho = C b^{-1}, \end{aligned} \end{aligned}$$
(A.4)

which shows (A.2).

Now we prove (A.3). Using Proposition 3.2 (i), (4.2) and (4.3), we see that

$$\begin{aligned}{} & {} \int _{\kappa (4b)}^{\infty } \int _{|y|\le 4b} \int _{0}^{t_1} p_{d} (r,y)\varphi _{\alpha ,\alpha +1} (s,r) dr dy ds \nonumber \\{} & {} \le C \int _{\kappa (4b)}^{\infty } \int _{0}^{4b} \int _{0}^{\infty } rK(\rho ) \rho ^{-1} e^{-C^{-1}rh(\rho )} s^{-\alpha -1}dr d\rho ds \nonumber \\ {}{} & {} \le C \int _{\kappa (4b)}^{\infty } \int _{0}^{\infty } \int _{\mathbb {R}^{d}} rK(|y|) |y|^{-d} e^{-C^{-1}rh(|y|)} e^{-C^{-1}rh(4b)} s^{-\alpha -1} dy dr ds \nonumber \\{} & {} \le C \int _{\kappa (4b)}^{\infty } \int _{0}^{\infty } e^{-C^{-1}rh(4b)/2} s^{-\alpha -1}dr ds \nonumber \\{} & {} \le C \int _{(h(4b))^{-1/\alpha }}^{\infty } (h(4b))^{-1} s^{-\alpha -1} ds \le C, \end{aligned}$$
(A.5)

where for the third inequality we use Lemma 3.1 (i). \(\square \)

The following lemma is counter part of Lemma A.5. The proof is more delicate than that of Lemma A.5 due to the fact that h(r) and \(\ell (r^{-1})\) may not be comparable for \(0<r\le 1\).

Lemma A.6

Let \(\alpha \in (0,1)\). Suppose the function \(\ell \) satisfies Assumption 2.3 (ii)–(2). Let \(\kappa (b)=(h(b))^{-1/\alpha }\) and let \(t_{1}>0\) be taken from Lemma 3.2. Then, there exists \(C>0\) depending only on \(\alpha ,\kappa _{1},\kappa _{2},d,\ell ,C_{0},C_{1},C_{2}\), and \({\varvec{\delta }}\) such that for any \(b>0\)

$$\begin{aligned}&\int _{\kappa (b)}^\infty \int _{ b\le |y| \le h^{-1}(s^{-\alpha })} \int _{0}^{t_1} |D_{x}p_{d} (r,y)| |\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds\le Cb^{-1}, \end{aligned}$$
(A.6)
$$\begin{aligned}&\int _{\kappa (4b)}^{\infty } \int _{|y|\le 4b} \int _{0}^{t_1} p_{d} (r,y)|\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds\le C. \end{aligned}$$
(A.7)

Proof

Note that p(t, 0) is well-defined on \((0,t_1]\). We first show (A.7). We split the integral into two parts.

$$\begin{aligned} \begin{aligned}&\int _{\kappa (4b)}^{\infty } \int _{|y|\le 4b}\int _{0}^{t_1}p_{d} (r,y) |\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds\\&\le \int _{\kappa (4b)}^{\infty } \int _{|y|\le 4b}\int _{0}^{a_0(\ell ^*(|y|^{-1}))^{-1}}p_{d}(r,y) |\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds\\&\quad +\int _{\kappa (4b)}^{\infty } \int _{|y|\le 4b}{\textbf{1}}_{a_0(\ell ^*(|y|^{-1}))^{-1} \le t_{1}} \int _{a_0(\ell ^*(|y|^{-1}))^{-1}}^{t_1}p_{d}(r,y) |\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds\\&=:I+II. \end{aligned} \end{aligned}$$

We can obtain \(I\le C\) by using Proposition 3.2 (ii) and the same argument in the proof of (A.3) (see (A.5)). Thus, we will show \(II\le C\) for some constant C for the rest of the proof of (A.7). Observe that

$$\begin{aligned} II&\le \int _{\kappa (4b)}^{\infty } \int _{|y|\le 4b}\int _{a_0(\ell ^*(|y|^{-1}))^{-1}}^{t_1}p_{d}(r,0) |\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds \\&\le \int _{\kappa (4b)}^{\infty } \int _{|y|\le 4b}\int _{a_0(\ell ^*(|y|^{-1}))^{-1}}^{a_0(\ell ^*((4b)^{-1}))^{-1}}p_{d}(r,0) |\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds \\&\quad + \int _{\kappa (4b)}^{\infty } \int _{|y|\le 4b} {\textbf{1}}_{a_0(\ell ^*((4b)^{-1}))^{-1} \le t_{1}} \\ {}&\quad \int _{a_0(\ell ^*((4b)^{-1}))^{-1}}^{t_1}p_{d}(r,0) |\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds \\&=: II_{1}+II_{2}. \end{aligned}$$

Since \(r\mapsto h(r)\) is decreasing, we see that \(h((\ell ^{-1}(a_0/r))^{-1})\ge h(4b)\) for \(r\le a_0(\ell ^*((4b)^{-1}))^{-1}\). Hence, by Proposition 3.2 (ii) and Fubini’s theorem

$$\begin{aligned} II_{1}&=\int _{\kappa (4b)}^{\infty } \int _{0}^{4b} \int _{a_0(\ell ^*(\rho ^{-1}))^{-1}}^{a_0(\ell ^*((4b)^{-1}))^{-1}}(\ell ^{-1}(a_{0}/r))^{d}e^{-crh((\ell ^{-1}(a_0/r))^{-1})} s^{-\alpha -1}\rho ^{d-1}dr d\rho ds\\&\le \int _{\kappa (4b)}^{\infty } \int _{0}^{a_0(\ell ^*((4b)^{-1}))^{-1}} \int _{0}^{(\ell ^{-1}(a_0/r))^{-1}}(\ell ^{-1}(a_{0}/r))^{d}e^{-crh(4b)} s^{-\alpha -1}\rho ^{d-1}d\rho dr ds\\&\le C\int _{\kappa (4b)}^{\infty } \int _{0}^{a_0(\ell ^*((4b)^{-1}))^{-1}} e^{-crh(4b)} s^{-\alpha -1} dr ds\\&\le C\int _{\kappa (4b)}^{\infty } \frac{1}{h(4b)} s^{-\alpha -1} ds\le C. \end{aligned}$$

Also for \(II_{2}\), by using Proposition 3.2 (ii) and relation \(K\le h\) and \(se^{-s} \le c e^{-s/2}\) we have

$$\begin{aligned} II_{2}&\le Cb^d\int _{\kappa (4b)}^{\infty }\int _{a_0(\ell ^*((4b)^{-1}))^{-1}}^{t_{1}}p_{d}(a_{0}(\ell ^{*}((4b)^{-1}))^{-1},0) s^{-\alpha -1}dr ds\\&\le Cb^d\int _{\kappa (4b)}^{\infty }\int _{a_0(\ell ^*((4b)^{-1}))^{-1}}^{t_{1}} b^{-d} (\ell ^{*}((4b)^{-1}))^{-1} K(4b) e^{-c\frac{h(4b)}{\ell ^{*}((4b)^{-1})}} s^{-\alpha -1}dr ds \\&\le C \int _{\kappa (4b)}^{\infty } e^{-c\frac{h(4b)}{\ell ^{*}((4b)^{-1})}} s^{-\alpha -1}dr ds\\&\le C h(4b) e^{-c\frac{h(4b)}{\ell ^{*}((4b)^{-1})}} \le C h(4b) e^{-c\frac{h(4b)}{\ell ((4b)^{-1})}}\le C. \end{aligned}$$

Thus, we obtain \(II\le C\).

Now, we show (A.6). First, we see that

$$\begin{aligned}&\int _{\kappa (b)}^\infty \int _{b\le |y| \le h^{-1}(s^{-\alpha })} \int _{0}^{t_1} |D_{x}p_{d} (r,y)| |\varphi _{\alpha ,\alpha +1} (s,r)| dr dy ds \\&\le \int _{\kappa (b)}^\infty \int _{b\le |y| \le h^{-1}(s^{-\alpha })} III(s,y) + {\textbf{1}}_{a_0(\ell ^*(|y|^{-1}))^{-1} \le t_{1}} IV (s,y) dy ds , \end{aligned}$$

where

$$\begin{aligned} III(s,y)&= \int _{0}^{a_0(\ell ^*(|y|^{-1}))^{-1}} |D_{x}p_{d} (r,y)| |\varphi _{\alpha ,\alpha +1} (s,r)| dr, \\ IV(s,y)&= \int _{a_0(\ell ^*(|y|^{-1}))^{-1}}^{t_{1}}|D_{x}p_{d} (r,y)| |\varphi _{\alpha ,\alpha +1} (s,r)|dr . \end{aligned}$$

Like (A.4), we have

$$\begin{aligned}&\int _{\kappa (b)}^\infty \int _{b\le |y| \le h^{-1}(s^{-\alpha })} III(s,y) dy ds \\&\le C \int _{\kappa (b)}^\infty \int _{b}^{h^{-1}(s^{-\alpha })} \int _{0}^{\infty } \rho ^{-2} e^{-crh(\rho )}s^{-\alpha -1} dr d\rho ds \\&\le C \int _{b}^\infty \int _{(h(\rho ))^{-1/\alpha }}^{\infty } \int _{0}^{\infty } \rho ^{-2} e^{-crh(\rho )}s^{-\alpha -1} dr d\rho ds \\&\le C \int _{b}^\infty \int _{(h(\rho ))^{-1/\alpha }}^{\infty } \frac{1}{h(\rho )} \rho ^{-2} s^{-\alpha -1} ds d\rho \le C \int _{b}^{\infty } \rho ^{-2} d\rho \le Cb^{-1}. \end{aligned}$$

Hence, we only need to control IV. Observe that by Remarks 3.1 (i), 2.3 and (2.21)

$$\begin{aligned}&\int _{\kappa (b)}^\infty \int _{b\le |y| \le h^{-1}(s^{-\alpha })} IV(s,y) dy ds \\&\le \int _{\kappa (b)}^\infty \int _{b\le |y| \le h^{-1}(s^{-\alpha })} \int _{a_0(\ell ^*(|y|^{-1}))^{-1}}^{t_{1}} |y| p_{d+2}(r,0) s^{-\alpha -1} dr dy ds \\&\le C \int _{\kappa (b)}^\infty \int _{b\le |y| \le h^{-1}(s^{-\alpha })} \int _{a_0(\ell ^*(|y|^{-1}))^{-1}}^{t_{1}} |y| p_{d+2}(a_{0}(\ell ^{*}(|y|^{-1}))^{-1},0) s^{-\alpha -1} dr dy ds \\&\le C \int _{\kappa (b)}^\infty \int _{b\le |y| \le h^{-1}(s^{-\alpha })} \int _{a_0(\ell ^*(|y|^{-1}))^{-1}}^{t_{1}} |y|^{-d-1} e^{-c\frac{h(|y|)}{\ell ^{*}(|y|^{-1})}}s^{-\alpha -1} dr dy ds \\&\le C \int _{\kappa (b)}^\infty \int _{b}^{h^{-1}(s^{-\alpha })} \rho ^{-2} \frac{h(\rho )}{h(\rho )} e^{-c\frac{h(\rho )}{\ell ^{*}(\rho ^{-1})}}s^{-\alpha -1} d\rho ds \\&\le C \int _{\kappa (b)}^\infty \int _{b}^{h^{-1}(s^{-\alpha })} \rho ^{-2} \frac{1}{h(\rho )}s^{-\alpha -1} d\rho ds \\&\le C \int _{b}^{\infty }\int _{(h(\rho ))^{-1/\alpha }}^{\infty } \rho ^{-2} \frac{1}{h(\rho )}s^{-\alpha -1} ds d\rho \le C b^{-1}, \end{aligned}$$

Thus, we obtain (A.6). The lemma is proved. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Park, D. An \(L_q(L_p)\)-theory for space-time non-local equations generated by Lévy processes with low intensity of small jumps. Stoch PDE: Anal Comp 12, 1439–1491 (2024). https://doi.org/10.1007/s40072-023-00309-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-023-00309-6

Keywords

Mathematics Subject Classification

Navigation