Skip to main content

Advertisement

Log in

A metric potential capacity: some qualitative properties of Schrödinger’s equations with a non negative potential

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

We introduce a new notion that we call a metric potential capacity associated to a positive potential V and a weak-star topology of a suitable Banach space. We show among other things that if the metric potential capacity of a closed set F is zero and the square root of the potential is locally q-integrable for some \(q\in [1,{+\,\infty }[\), then the usual Sobolev capacity in \(W^{1,q}\) of the set F is zero. Properties of potential capacities are presented and applications to Schrödinger type equations are also made with very singular potentials including the modified Pösh–Teller potential \(V_\alpha (x)=\Big |\sin |x|\Big |^{-\alpha },\ \alpha >0\). We discuss about existence and non existence of a solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aikawa: Quasi additivity of Riesz capacity. Math. Scand. 69(1), 15–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Assouad, P.: Plongements lipschitziens dans \(\mathbb{R}^n\). Bull. Soc. Math. France 111(4), 429–448 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bretsch, M.R.: The principle of linearized stability for a class od degenerate diffusion Equations. J. Differ. Equ. 57, 373–405 (1985)

    Article  Google Scholar 

  4. Boccardo, L., Gallouet, Th., Orsina, L.: Existence and uniqueness of entropy solutions for non linear elliptic equations with measure data. Ann. Inst. H. Poincaré Non linéaire 13(5), 539–554 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezis, H.: Analyse Fonctionnelle Théorie et Application. Masson, New York (1983)

    MATH  Google Scholar 

  6. Ph Benilan, H.: Brezis nonlinear problems related to Thomas–Fermi equation. J. Evol. Equ. 3, 673–770 (2004)

    Article  Google Scholar 

  7. Brezis, H., Cazenave, T., Martel, Y., Ramiandrisoa, A.: Blow-up for \(u_t-\Delta =g(u) \) revisited. Adv. Differ. Equ. 1, 73–90 (1996)

    MATH  Google Scholar 

  8. Brezis, H., Ponce, A.C.: Kato’s inequality when \(\Delta \, u\) is a measure. CRAS 338(8), 599–604 (2004). https://doi.org/10.1016/j.crma.2003.12.032

    Article  MathSciNet  MATH  Google Scholar 

  9. Díaz, J.I.: Confinement of wave packets for the Schrödinger equation with a very singular potential. In: Conference Nonlinear Partial Differential equations and Mathematical Analysis (2017)

  10. Díaz, J.I.: On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via potentials: the multi-dimensional case. SeMA J. 74(3), 225–278 (2017). https://doi.org/10.1007/s40324-017-0115-3

    Article  Google Scholar 

  11. Díaz, J.I.: On the ambiguous treatment of the fractionnary quasi-relativistic Schrödinger equation for the infinite potential well and an alternative via potentials: the multi-dimensional. Under publication. Díaz’s website http://www.mat.uem.es/jdiaz

  12. Díaz, J.I., Gómez-Castro, D., Rakotoson, J.M.: Existence and uniqueness of solutions of Schrödinger type stationary equations with very singular potentials without prescribing boundary conditions and some applications. DEA 10(1), 47–74 (2018)

    MATH  Google Scholar 

  13. Díaz, J.I., Gómez-Castro, D., Rakotoson, J.M., Temam, R.: Linear diffusion with singular absorption potential and/or unbounded convective flow: the weighted space approach. Discret. Contin. Dyn. Syst. 38(2), 509–546 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Díaz, J.I., Rakotoson, J.M.: On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary. JFA 257, 807–831 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Díaz, J.I., Rakotoson, J.M.: Elliptic problems on the space of weighted with the distance to the boundary integrable functions revisited. Electron. J. Differ. Equ. Conf. 21, 45–59 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  17. Guilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations od Second Order. Springer, Berlin (1987, 1983)

  18. Havin, H., Maz’ya, V.: Nonlinear potential theory. Russ. Math. Surv. 27, 505–510 (1972)

    MathSciNet  Google Scholar 

  19. Kato, T.: Schrödinger operators with singular potential. Israel J. Math. 13, 135–148 (1972). https://doi.org/10.1007/BF02760233

    Article  MathSciNet  Google Scholar 

  20. Kufner, A.: Weighted Sobolev Spaces. Teuber Verlagsgesellshaft, Prague (1980)

    MATH  Google Scholar 

  21. Lehrbäck, J., Tuominen, H.: A note on the dimensions of Assouad and Aikawa. J. Math. Soc. Jpn. 65(2), 343–356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lehrbäck, J., Vähäkangas, A.: In between the inequalities of Sobolev and Hardy. J. Funct. Anal. 271(2), 330–364 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marcus, M., Veron, L.: Nonlinear Second Order Elliptic Equations Involving Measures. de Gruyter, Berlin (2013)

    Book  MATH  Google Scholar 

  24. Meyers, N.: A theory of capacities for potentials of functions in Lebesgue space. Math Scand. 26, 255–292 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. Orsina, L., Ponce, A.: Semilinear elliptic equations and systems with diffuse measures. J. Evol. Equ. 8(4), 781–812 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ponce, A.: Elliptic PDEs, measures and capacities from the Poisson equation to nonlinear Thomas–Fermi problems. EMS Tracts Math. 23, 25 (2016)

    MATH  Google Scholar 

  27. Rakotoson, J.M.: Potential-capacity and some applications. Asympt. Anal. 114, 225–252 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Rakotoson, J.M.: New Hardy inequalities and behaviour of linear elliptic equations. J. Funct. Anal. 263, 2893–2920 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Triebel, H.: Interpolation Theory, Functions Spaces, Differential Operators. VEB Deutscher Verlag der Weissenshaften, Berlin (1978)

    MATH  Google Scholar 

  30. Veron, L.: Singularities of Solution of Second Order Quasilinear Equations, pp. 176–180. Longman, Harlow (1995)

    Google Scholar 

  31. Yoshida, K.: Functional Analysis. Springer, Berlin (1965)

    Book  Google Scholar 

  32. Ziemer, W.: Weakly Differentiable Functions. Springer, NY (1989)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referee for her/his valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Michel Rakotoson.

Additional information

This paper is dedicated to my friend Ildefonso DIAZ for his seventieth birthday.

Thank you Ilde for these 30 years of friendships.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Definitions of an Assouad dimension, and Lemma of Aikawa

Let us consider a set \(E\subset \Omega ,\ r>0\) and denote by N(Er) the minimal number of open balls of radius r centered at a point of E necessary to cover E. Then, we have

Definition 5.1

Assouad dimension of a set K [2, 22] Let \(K\subset \Omega \). The (upper) Assouad dimension of K is:

$$\begin{aligned}{} & {} \dim _A(K)\\{} & {} \quad =\inf \left\{ \lambda \ge 0\ N\Big (K\cap B(x;r)\Big )\le c_\lambda \left( \dfrac{r}{R}\right) ^{-\lambda },\ \forall \,x\in E,\ 0<r<R<diameter(K)\right\} .\end{aligned}$$

To fix an idea of such dimension, if K is a smooth sub-manifold whose Hausdorff dimension is \(\lambda \in [0,n]\), then \(\dim _A(K)=\lambda \).

The link between the Assouad dimension and the integrability of the function \(\textrm{dist}\,(y;K)\dot{=}d_K(y)\) is made via Aïkawa condition, which reads as:

Definition 5.2

Aïkawa’s condition Let K be a closed set of \(\mathrm{I\!R}^n\) and define:

$$\begin{aligned} \mathcal A(K)=\left\{ s\in \mathrm{I\!R}_+:\exists c>0,\int _{B(x;r)}\textrm{dist}\,(y;K)^{s-n}dy\le cr^s\hbox { holds if }x\in K,\ 0<r<\hbox {diameter of }K \right\} .\end{aligned}$$

Lemma 5.1

(See [21, 22]) Let K be a closed non void set. Then

  1. (1)

    \(\dim _A(K)=\inf \mathcal A(K)\le n.\)

  2. (2)

    If s is such that \(\dim _A(K)<s\) or \(s\ge n\) then \(s\in \mathcal A(K)\).

  3. (3)

    If \(s\in \mathcal A(K)\) with \(0<s<n\) then there is \(0<s'<s\) such that \(s'\in \mathcal A(K)\) in particular \(\dim _A(K)<s\).

  4. (4)

    Assume that K is a compact subset of \(\mathrm{I\!R}^n\) and let \(s\ge 0\). Then \(s\in \mathcal A(K)\) if and only if for some \(0<R\le {+\,\infty }\), there exists a constant \(c>0\) such that the inequality in \(\mathcal A(K) \) holds for \(x\in K,\ 0<r<R\).

1.2 Definition of an Hausdorff measure

Definition 5.3

(See [26, 32]) Let \(0\le s<{+\,\infty },\ 0<\delta \le {+\,\infty }\), a compact \(K\subset \mathrm{I\!R}^n\).

Then

$$\begin{aligned}\mathcal H_\delta ^s(K)=\inf \left\{ \sum _{i=0}^\ell \omega _sr_i^s,\ K\subset \bigcup _{i=0}^\ell B(x_i;r_i),\ 0<r_i\le \delta \right\} \end{aligned}$$

where \(\omega _s=\pi ^{\frac{s}{2}}\left[ \Gamma \left( \dfrac{s}{2}+1\right) \right] ^{-1}.\)

The Hausdorff measure of dimension \(s\in \mathrm{I\!R}_+\) of K is

$$\begin{aligned}\mathcal H^s(K)=\lim _{\delta \rightarrow 0}\mathcal H^s_\delta (K).\end{aligned}$$

It is shown (see for instance [26]) that \(\mathcal H^s(K)=0\) if and only if \(\mathcal H^s_\infty (K)=0\).

So the Hausdorff dimension of a compact \(K\subset \mathrm{I\!R}^n\) is

$$\begin{aligned}\dim _\mathcal H(K)=\inf \Big \{s\ge 0,\ \mathcal H^s_\infty (K)=0\Big \}.\end{aligned}$$

If \(s=n\) the \(meas(K)=\mathcal H^n(K)\).

1.3 Approximation Lemma of a distance function

We need the following Lemma whose proof is given in [20, 29, 32].

Lemma 5.2

Let \(A\subset \mathrm{I\!R}^n\) be closed and for \(x\in \mathrm{I\!R}^n\) let \(d(x)=d(x;A)\) denote the distance from x to A. Let

$$\begin{aligned}U=\Big \{x:d(x)<1\Big \}.\end{aligned}$$

Then there is a function \(\rho \in C^\infty (U-A)\) and a positive number \(M=M(n)\) such that

$$\begin{aligned}{} & {} M^{-1}d(x)\le \rho (x)\le M\,d(x),\ x\in U-A\\{} & {} |D^\alpha \rho (x)|\le c(\alpha )\,d(x)^{1-|\alpha |},\ x\in U-A,\ \ |\alpha |=\alpha _1+\cdots +\alpha _n.\end{aligned}$$

In particular, the result holds if \(A=\partial \Omega \) boundary of an open bounded set \(\Omega \) , in this case

$$\begin{aligned}\rho \in C^\infty (\Omega )\hbox { and }d(x)=\delta (x)=\textrm{dist}\,(x;\partial \Omega ).\end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakotoson, J.M. A metric potential capacity: some qualitative properties of Schrödinger’s equations with a non negative potential. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116, 112 (2022). https://doi.org/10.1007/s13398-022-01254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-022-01254-0

Keywords

Mathematics Subject Classification

Navigation