Skip to main content

Advertisement

Log in

Modeling accounting year dependence in runoff triangles

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

Typically, non-life insurance claims data is studied in claims development triangles which display the two time axes accident years and development years. Most stochastic claims reserving models assume independence between different accident years. Therefore, such models fail to model claims inflation appropriately, because claims inflation acts on all accident years simultaneously. We introduce a Bayes chain ladder reserving model which enables us to model claims inflation. In this model we derive analytical formulas for the posterior distribution, the claims reserves and their prediction uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bühlmann H, Gisler A (2005) A course in credibility theory and its applications. Springer, Berlin

  2. Clark DR (2006) Variance and covariance due to inflation. CAS Forum (fall), pp 61–95

  3. Donnelly C, Wüthrich MV (2012) Bayesian prediction of disability insurance frequencies using economic factors. Ann Actuar Sci (to appear)

  4. Gigante P, Picech L, Sigalotti L (2012) Claims reserving in the hierarchical generalised linear models framework (preprint)

  5. Hertig J (1985) A statistical approach to the IBNR-reserves in marine insurance. Astin Bull 15(2):171–183

    Article  Google Scholar 

  6. Jessen AH, Rietdorf N (2011) Diagonal effects in claims reserving. Scand Actuar J 1:21–37

    Article  MathSciNet  Google Scholar 

  7. de Jong P (2006) Forecasting runoff triangles. North Am Actuar J 10(2):28–38

    MathSciNet  Google Scholar 

  8. Johnson RA, Wichern DW (1988) Applied multivariate statistical analysis, 2nd edn. Prentice Hall, Upper Saddle River

  9. Kuang D, Nielsen B, Nielsen JP (2008) Identification of the age-period-cohort model and the extended chain-ladder model. Biometrika 95:979–986

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuang D, Nielsen B, Nielsen JP (2008) Forecasting with the age-period-cohort model and the extended chain-ladder model. Biometrika 95:987–991

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuang D, Nielsen B, Nielsen JP (2011) Forecasting in an extended chain-ladder-type model. J Risk Insur 78(2):345–359

    Article  Google Scholar 

  12. Lee Y, Nelder JA, Pawitan P (2006) Unified analysis via H-likelihood. Generalized linear models with random effects. Chapman& Hall, Boca Raton

  13. McNeil AJ, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques. Princeton University Press, Princeton

  14. Mack T (1993) Distribution-free calculation of the standard error of chain ladder reserve estimates. Astin Bull 23(2):213–225

    Article  Google Scholar 

  15. Shi P, Basu S, Meyers GG (2012) A Bayesian log-normal model for multivariate loss reserving. North Am Actuar J 16(1):29–51

    Google Scholar 

  16. Venter GG (2007) Refining reserve runoff ranges. CAS Forum (summer)

  17. Wüthrich MV (2010) Accounting year effects modeling in the stochastic chain ladder reserving method. North Am Actuar J 14(2):235–255

    Google Scholar 

  18. Wüthrich MV, Embrechts P, Tsanakas A (2011) Risk margin for a non-life insurance run-off. Stat Risk Model 28(4):299–317

    MathSciNet  MATH  Google Scholar 

  19. Wüthrich MV, Merz M (2008) Stochastic claims reserving methods in insurance. Wiley, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Salzmann.

A. Appendix

A. Appendix

Proof of Theorem 2

For the proof of Theorem 2 we consider the moment generating function of \(\varvec{\xi }\). To do so, we choose \({\varvec{a}}=\left({{\varvec{a}}^{(1)}}^{\prime },\ldots ,{{\varvec{a}}^{(I+J)}}^{\prime }\right)^{\prime }\in \mathbb R ^{I(J+1)}\) with \({\varvec{a}}^{(k)}\in \mathbb R ^q\) for all \(k=1,\ldots ,I+J\). Then we obtain for the moment generating function of \(\varvec{\xi }\) (using the conditional independence of the \({\varvec{\xi }}^{(k)}\) in the fourth equation)

$$\begin{aligned} M_{{\varvec{\xi }}}({\varvec{a}})&= {\mathbb E }\left[\exp \left\{ {\varvec{a}}^{\prime }{\varvec{\xi }}\right\} \right] ={\mathbb E }\left[{\mathbb E }\left[\left.\exp \left\{ \sum _{k=1}^{I+J}{{\varvec{a}}^{(k)}}^{\prime }{\varvec{\xi }}^{(k)}\right\} \right|{\varvec{\mu }}\right]\right]\\&= {\mathbb E }\left[{\mathbb E }\left[\left.\prod_{k=1}^{I+J}\exp \left\{ {{\varvec{a}}^{(k)}}^{\prime }{\varvec{\xi }}^{(k)}\right\} \right|{\varvec{\mu }}\right]\right]={\mathbb E }\left[\prod_{k=1}^{I+J}\exp \left\{ {{\varvec{a}}^{(k)}}^{\prime }P_k{\varvec{\mu }}+\frac{1}{2}{{\varvec{a}}^{(k)}}^{\prime }\Sigma _k{{\varvec{a}}^{(k)}}\right\} \right]\\&= {\mathbb E }\left[\exp \left\{ \left(\sum _{k=1}^{I+J}{{\varvec{a}}^{(k)}}^{\prime }P_k\right){\varvec{\mu }}\right\} \right]\exp \left\{ \frac{1}{2}\sum _{k=1}^{I+J}{{\varvec{a}}^{(k)}}^{\prime }\Sigma _k{{\varvec{a}}^{(k)}}\right\} \\&= \exp \left\{ \sum _{k=1}^{I+J}{{\varvec{a}}^{(k)}}^{\prime }P_k{\varvec{\phi }}+\frac{1}{2}\left(\sum _{k=1}^{I+J}{{\varvec{a}}^{(k)}}^{\prime }P_k\right)T\left(\sum _{l=1}^{I+J}{{\varvec{a}}^{(l)}}^{\prime }P_l\right)^{\prime }+\frac{1}{2}\sum _{k=1}^{I+J}{{\varvec{a}}^{(k)}}^{\prime }\Sigma _k{{\varvec{a}}^{(k)}}\right\} \\&= \exp \left\{ \sum _{k=1}^{I+J}{{\varvec{a}}^{(k)}}^{\prime }\left(P_k{\varvec{\phi }}\right)+\frac{1}{2}\sum _{k,l=1}^{I+J}{{\varvec{a}}^{(k)}}^{\prime }\left(P_kTP_l^{\prime }+\Sigma _k1_{\{k=l\}}\right){{\varvec{a}}^{(l)}}\right\} \\&= \exp \left\{ {\varvec{a}}^{\prime }\varvec{\varphi }+\frac{1}{2}{\varvec{a}}^{\prime }\Upsilon {\varvec{a}}\right\} , \end{aligned}$$

where \(\varvec{\varphi }\) and \(\Upsilon \) are defined in Theorem 2. Therefore, the unconditional distribution of \({\varvec{\xi }}\) is multivariate normal with parameters \(\varvec{\varphi }\) and \(\Upsilon \). This completes the proof.\(\square \)

Proof of Theorem 3

Formula (4.3) and Corollary 1 imply that

$$\begin{aligned} \widehat{C}_{i,J}&= {\mathbb E }\left[\left.C_{i,J}\right|{\varvec{\xi }}_{{\mathcal D}_I}\right]=C_{i,I-i}\sum _{s=1}^{2^{J-(I-i)}}{\mathbb E }\left[\left.\exp \left\{ {\varvec{e}}_{i,s}^{\prime }{\varvec{\xi }}_{{\mathcal D}_I^c}\right\} \right|{\varvec{\xi }}_{{\mathcal D}_I}\right]\\&= C_{i,I-i}\sum _{s=1}^{2^{J-(I-i)}}\exp \left\{ {\varvec{e}}_{i,s}^{\prime }\varvec{\varphi }^{post}+\frac{1}{2}{\varvec{e}}_{i,s}^{\prime }\Upsilon ^{post}{\varvec{e}}_{i,s}\right\} , \end{aligned}$$

where the last equation is a direct consequence of log-normal distributions.\(\square \)

Proof of Theorem 4

By applying Corollary 1 and using the notation introduced in Theorem 3 we obtain for the covariance terms in formula (4.4)

$$\begin{aligned} {\rm Cov}\left(\!\left.\!C_{i,J}\!,\!C_{l,J}\!\right|\!{\mathcal D}_I\!\right)&= C_{i,I-i}C_{l,I-l}\sum _{s=1}^{2^{J-(I-i)}}\sum _{u=1}^{2^{J-(I-l)}}\!{\rm Cov}\!\left(\!\left.\exp \left\{ {\varvec{e}}_{i,s}^{\prime }{\varvec{\xi }}_{{\mathcal D}_{I}^{c}}\right\} ,\exp \left\{ {\varvec{e}}_{l,u}^{\prime }{\varvec{\xi }}_{{\mathcal D}_{I}^{c}}\right\} \!\right|\!{\varvec{\xi }}_{{\mathcal D}_I}\!\right)\\&= C_{i,I-i}C_{l,I-l}\sum _{s=1}^{2^{J-(I-i)}}\sum _{u=1}^{2^{J-(I-l)}}\exp \left\{ {\varvec{e}}_{i,s}^{\prime }\varvec{\varphi }^{post}+\frac{1}{2}{\varvec{e}}_{i,s}^{\prime }\Upsilon ^{post}{\varvec{e}}_{i,s}\right\} \\&\times \exp \left\{ {\varvec{e}}_{l,u}^{\prime }\varvec{\varphi }^{post}+\frac{1}{2}{\varvec{e}}_{l,u}^{\prime }\Upsilon ^{post}{\varvec{e}}_{l,u}\right\} \left(\exp \left\{ {\varvec{e}}_{i,s}^{\prime }\Upsilon ^{post}{\varvec{e}}_{l,u}\right\} -1\right). \end{aligned}$$

By substituting \(\beta _{m,n}^{post}=\exp \left\{ {\varvec{e}}_{m,n}^{\prime }\varvec{\varphi }^{post}+\frac{1}{2}{\varvec{e}}_{m,n}^{\prime }\Upsilon ^{post}{\varvec{e}}_{m,n}\right\} \) we obtain for the conditional MSEP

$$\begin{aligned}&\sum _{I-J<i,l\le I}C_{i,I-i}C_{l,I-l}\sum _{s=1}^{2^{J-(I-i)}}\sum _{u=1}^{2^{J-(I-l)}}\beta _{i,s}^{post}\beta _{l,u}^{post}\left(\exp \left\{ {\varvec{e}}_{i,s}^{\prime }\Upsilon ^{post}{\varvec{e}}_{l,u}\right\} -1\right)\\&\quad =\sum _{I-J<i,l\le I}\widehat{C}_{i,J}\widehat{C}_{l,J} \sum _{s=1}^{2^{J-(I-i)}}\sum _{u=1}^{2^{J-(I-l)}}\frac{\beta _{i,s}^{post}}{\sum _{v=1}^{2^{J-(I-i)}}\beta _{i,v}^{post}}\frac{\beta _{l,u}^{post}}{\sum _{w=1}^{2^{J-(I-l)}}\beta _{l,w}^{post}}\left(\exp \left\{ {\varvec{e}}_{i,s}^{\prime }\Upsilon ^{post}{\varvec{e}}_{l,u}\right\} -1\right). \end{aligned}$$

In the last equation we multiply and divide each term \(C_{m,I-m}\) by \(\sum _{n=1}^{2^{J-(I-m)}}\beta _{m,n}^{post}\) and set, see Theorem 3,

$$\begin{aligned} \widehat{C}_{m,J}=C_{m,I-m}\sum _{n=1}^{2^{J-(I-m)}}\beta _{m,n}^{post}. \end{aligned}$$

Substituting \(\omega _{m,n}^{post}\) as defined in Theorem 4 provides the claim.\(\square \)

Proof of Corollary 2

For the coefficient of variation of the ultimate claim we obtain

$$\begin{aligned}&{\rm Vco}\left(\left.C_J\right|{\mathcal D}_I\right)\\&=\frac{\left[\sum _{I-J<i,l\le I}\widehat{C}_{i,J}\widehat{C}_{l,J}\sum _{s=1}^{2^{J-(I-i)}}\sum _{u=1}^{2^{J-(I-l)}}\omega _{i,s}^{post}\omega _{l,u}^{post}\left(\exp \left\{ {\varvec{e}}_{i,s}^{\prime }\Upsilon ^{post}{\varvec{e}}_{l,u}\right\} \!-\!1\right)\right]^{1/2}}{\sum _{I-J<i\le I}\widehat{C}_{i,J}}\\&\le \frac{\left[\sum _{I-J<i,l\le I}\widehat{C}_{i,J}\widehat{C}_{l,J}\sum _{s=1}^{2^{J-(I-i)}}\sum _{u=1}^{2^{J-(I-l)}}\omega _{i,s}^{post}\omega _{l,u}^{post}\left(v^{{\rm max}}_{i,l}\!-\!1\right)\right]^{1/2}}{\sum _{I-J<i\le I}\widehat{C}_{i,J}}\\&=\frac{\left[\sum _{I-J<i,l\le I}\widehat{C}_{i,J}\widehat{C}_{l,J}\left(v^{{\rm max}}_{i,l}\!-\!1\right)\right]^{1/2}}{\widehat{C}_J}. \end{aligned}$$

The last step follows because \(\sum _{n=1}^{2^{J-\!(\!I-m\!)}}\!\omega _{m,n}^{post}\!=\!1\). The second upper bound for \({\rm Vco}\!\left(\!\left.C_J\!\right|\!{\mathcal D}_I\!\right)\) follows directly from

$$\begin{aligned} {\rm Vco}\left(\left.C_J\right|{\mathcal D}_I\right)\le \frac{\left[\sum _{I-J<i,l\le I}\widehat{C}_{i,J}\widehat{C}_{l,J}\left(v^{{\rm max}}_{i,l}\!-\!1\right)\right]^{1/2}}{\widehat{C}_J}\le (v^{{\rm max}}-1)^{1/2}. \end{aligned}$$

\(\square \)  

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salzmann, R., Wüthrich, M.V. Modeling accounting year dependence in runoff triangles. Eur. Actuar. J. 2, 227–242 (2012). https://doi.org/10.1007/s13385-012-0055-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-012-0055-3

Keywords

Navigation