Skip to main content
Log in

On odd-normal numbers

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

A real number x is considered normal in an integer base \(b \geqslant 2\) if its digit expansion in this base is “equitable”, ensuring that for each \(k \geqslant 1\), every ordered sequence of k digits from \(\{0, 1, \ldots , b-1\}\) occurs in the digit expansion of x with the same limiting frequency. Borel’s classical result [4] asserts that Lebesgue-almost every \(x \in {\mathbb {R}}\) is normal in every base \(b \geqslant 2\). This paper serves as a case study of the measure-theoretic properties of Lebesgue-null sets containing numbers that are normal only in certain bases. We consider the set \({\mathscr {N}}({\mathscr {O}}, {\mathscr {E}})\) of reals that are normal in odd bases but not in even ones. This set has full Hausdorff dimension [30] but zero Fourier dimension. The latter condition means that \({\mathscr {N}}({\mathscr {O}}, {\mathscr {E}})\) cannot support a probability measure whose Fourier transform has power decay at infinity. Our main result is that \({\mathscr {N}}({\mathscr {O}}, {\mathscr {E}})\) supports a Rajchman measure \(\mu \), whose Fourier transform \({\widehat{\mu }}(\xi )\) approaches 0 as \(|\xi | \rightarrow \infty \) by definiton, albeit slower than any negative power of \(|\xi |\). Moreover, the decay rate of \({\widehat{\mu }}\) is essentially optimal, subject to the constraints of its support. The methods draw inspiration from the number-theoretic results of Schmidt [38] and a construction of Lyons [24]. As a consequence, \(\mathscr {N}({\mathscr {O}}, {\mathscr {E}})\) emerges as a set of multiplicity, in the sense of Fourier analysis. This addresses a question posed by Kahane and Salem [17] in the special case of \({\mathscr {N}}({\mathscr {O}}, {\mathscr {E}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A. Algom, F. Rodriguez Hertz and Z. Wang, Pointwise normality and Fourier decay for self-conformal measures, Adv. Math. 393 (2021), Paper No. 108096, 72 pp.

  2. N. Bary, A treatise on Trigonometric Series. Vols. I, II, Authorized translation by Margaret F. Mullins, Pergamon Press, The Macmillan Company, New York (1964).

    Google Scholar 

  3. C. Bluhm, Liouville numbers, Rajchman measures and small Cantor sets, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2637–2640.

    Article  MathSciNet  Google Scholar 

  4. É. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Math. Palermo 27 (1909), 247-271.

    Article  Google Scholar 

  5. J. Brémont, Self-similar measures and the Rajchman property, Ann. H. Lebesgue 4 (2021), 973–1004.

    Article  MathSciNet  Google Scholar 

  6. Y. Bugeaud, Distribution modulo one and Diophantine Approximation, Cambridge Tracts in Math., 193 Cambridge University Press, Cambridge, 2012.

  7. G. Cantor, Gesammelte Abhandlungen Mathematischen and Philosophischen Inhalts, Reprint of the 1932 original, Springer, Berlin (1980).

    Google Scholar 

  8. J. W. S. Cassels, On a problem of Steinhaus about normal numbers, Colloq. Math. 7(1959), 95-101.

    Article  MathSciNet  Google Scholar 

  9. H. Davenport, P. Erdős and W. J. LeVeque, On Weyl’s criterion for uniform distribution, Michigan Math. J. 10 (1963), 311–314.

    Article  MathSciNet  Google Scholar 

  10. R. Durrett, Probability: Theory and Examples, Fourth edition, Camb. Ser. Stat. Probab. Math., 31 Cambridge University Press, Cambridge, 2010.

  11. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications. second edition, Wiley & Sons, England (2003).

    Book  Google Scholar 

  12. X. Gao, J. Ma, K. Song, Y. Zhang, On the Fourier transform of coin-tossing type measures, J. Math. Anal. Appl. 484, 123706, 14 (2020)

  13. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, sixth edition, Oxford University Press, Oxford, 2008.

    Book  Google Scholar 

  14. G. Harman, Metric Number Theory, LMS Monographs New Series, vol. 18, Clarendon Press, Oxford (1998).

    Google Scholar 

  15. J. P. Kahane, La multiplication de Rajchman et les ensembles\(U(\varepsilon )\)de Zygmund (French), Studia Math. 149 (2002), no. 2, 191–196.

  16. J. P. Kahane and R. Salem, Ensembles Parfaits et Séries Trigonometriques, Hermann, Paris (1963).

    Google Scholar 

  17. J. P. Kahane and R. Salem, Distribution modulo 1 and sets of uniqueness, Bull. Amer. Math. Soc. 70 (1964), 259–261.

    Article  MathSciNet  Google Scholar 

  18. A. Kechris and A. Louveau, Descriptive Set Theory and the structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128 (1987), Cambridge University Press, Cambridge.

  19. J. F. Koksma, Diophantische Approximationen, Ergebnisse d. Math. u. ihrer Grenzgebiete, vol. 4, Springer, Berlin (1936).

  20. L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley-Interscience, New York (1974).

    Google Scholar 

  21. J. Li and T. Sahlsten, Trigonometric series and self-similar sets, J. Eur. Math. Soc. 24 (2022), no. 1, 341–368.

    Article  MathSciNet  Google Scholar 

  22. R. Lyons, A characterization of measures whose Fourier-Stieltjes transforms vanish at infinity, Ph.D. Thesis, Univ. of Michigan (1983).

  23. R. Lyons, Fourier-Stieltjes coefficients and asymptotic distribution modulo 1, Ann. of Math., 122 (1985), 155-170.

    Article  MathSciNet  Google Scholar 

  24. R. Lyons, The measure of nonnormal sets, Invent. Math. 83 (1986), 605–616.

    Article  MathSciNet  Google Scholar 

  25. D. Menshov, Sur l’unicité du dévelloppement trigonométrique, CRASP 163 (1916), 433–436.

    Google Scholar 

  26. I. Niven, Irrational Numbers, The Carus Mathematical Monographs, no. 11, The Mathematical Association of America, Wiley and Sons, Inc., New York (1956).

  27. I. Niven and H. S. Zuckerman, On the definition of normal numbers, Pacific J. Math. 1 (1951), 103–109.

    Article  MathSciNet  Google Scholar 

  28. I. I. Piatetski-Shapiro, On the problem of uniqueness of expansion of a function in a trigonometric series (Russian), Moscov. Gos. Univ. Uc. Zap. 155, Mat. 5 (1952), 54–72.

  29. I. I. Piatetski-Shapiro, Supplement to the work: “On the problem of uniqueness of expansion of a function in a trigonometric series” (Russian), Moscov. Gos. Univ. Uc. Zap. 165, Mat. 7 (1954), 79–97.

  30. A. D. Pollington, The Hausdorff dimension of a set of normal numbers, Pacific J. Math. 95 (1981), 193-204.

    Article  MathSciNet  Google Scholar 

  31. A. Pollington, S. Velani, A. Zafeiropoulos, E. Zorin, Inhomogeneous Diophantine approximation on \(M_0\)-sets with restricted denominators, Int. Math. Res. Not. (2022), no. 11, 8571–8643.

  32. M. Pramanik and J. Zhang, Measures supported on partly normal numbers, preprint (2024).

  33. A. Rapaport, On the Rajchman property for self-similar measures on\({\mathbb{R}}^d\), Adv. Math. 403 (2022), Paper No. 108375, 53 pp.

  34. B. Riemann, Habilitatsionschrift, Abh. der Ges. der Wiss. zu Gott. 13, 87-132 (1868)

  35. R. Salem, Sets of uniqueness and sets of multiplicity, Trans. Amer. Math. Soc. 54 (1943), 218-228.

    Article  MathSciNet  Google Scholar 

  36. R. Salem, Algebraic Numbers and Fourier Analysis, D.C. Heath and Co., Boston, MA (1963).

    Google Scholar 

  37. R. Salem, A. Zygmund, Sur un theoreme de Piatetski-Shapiro, C. R. Acad. Sci. Paris 240 (1955), 2040–2042.

  38. W. M. Schmidt, On normal numbers, Pacific J. Math. 10 (1960), 661–72.

    Article  MathSciNet  Google Scholar 

  39. P. Varjú and H. Yu, Fourier decay of self-similar measures and self-similar sets of uniqueness, Anal. PDE 15 (2022), no. 3, 843–858.

    Article  MathSciNet  Google Scholar 

  40. D. D. Wall, Normal numbers, PhD thesis, University of California, Berkeley, CA, 1949.

  41. W. Young, A note on trigonometrical series, Mess. Math. 38 (1909), 44–48.

    Google Scholar 

  42. A. Zygmund, Trigonometric Series, 2nd edition, Cambridge Univ. Press, (1959).

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Xiang Gao for introducing them to the area of metrical number theory, for valuable discussions and extensive references on the subject. This work was initiated in 2022, when JZ was visiting University of British Columbia on a study leave from China University of Mining and Technology-Beijing, funded by a scholarship from China Scholarship Council. He would like to thank all three organizations for their support that enabled his visit. JZ was also supported by National Natural Science Foundation of China (Grant nos. 11801555, 11971058 and 12071431). MP was partially supported by a Discovery grant from Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malabika Pramanik.

Additional information

Communicated by Apoorva Khare, Rahul Roy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, M., Zhang, J. On odd-normal numbers. Indian J Pure Appl Math 55, 974–998 (2024). https://doi.org/10.1007/s13226-024-00642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-024-00642-z

Keywords

Mathematics Subject Classification

Navigation